Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-799-2024
https://doi.org/10.5194/wes-9-799-2024
Research article
 | 
05 Apr 2024
Research article |  | 05 Apr 2024

Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent

Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes

Related authors

Probabilistic lifetime extension assessment using mid-term data: Lillgrund wind farm case study
Shadan Mozafari, Jennifer Rinker, Paul Veers, and Katherine Dykes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-68,https://doi.org/10.5194/wes-2024-68, 2024
Preprint under review for WES
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
Moritz Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci., 9, 2175–2193, https://doi.org/10.5194/wes-9-2175-2024,https://doi.org/10.5194/wes-9-2175-2024, 2024
Short summary
Unsupervised anomaly detection of permanent-magnet offshore wind generators through electrical and electromagnetic measurements
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci., 9, 2063–2086, https://doi.org/10.5194/wes-9-2063-2024,https://doi.org/10.5194/wes-9-2063-2024, 2024
Short summary
Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024,https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
A machine learning-based approach for active monitoring of blades pitch misalignment in wind turbines
Sabrina Milani, Jessica Leoni, Stefano Cacciola, Alessandro Croce, and Mara Tanelli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-100,https://doi.org/10.5194/wes-2024-100, 2024
Revised manuscript accepted for WES
Short summary
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024,https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary

Cited articles

Bacharoudis, K. C., Antoniou, A., and Lekou, D. J.: Measurement uncertainty of fatigue properties and its effect on the wind turbine blade reliability level, in: Proceedings EWEA, Paris, France, 17–20 November 2015, EWEA, Corpus ID: 52970967, 2015. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., and Natarajan, A., and Hansen, M. H.: Description of the DTU 10MW Reference Wind Turbine, DTU Wind Energy Report-I-0092, Technical University of Denmark, Roskilde, Denmark, 2013. a, b
Basquin, O. H.: The Exponential Law of Endurance Tests, in: ASTM, 625–630, Atlantic city, New Jersey, 28 June 28–2 July 1910, Corpus ID: 222450133 1910. a
Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E.: Wind energy handbook, John Wiley & Sons, https://doi.org/10.1002/9781119992714, 2011. a
Choi, S., Canfield, R. A., and Grandhi, R. V.: Reliability-Based Structural Design, Springer, https://doi.org/10.1007/978-1-84628-445-8, 2007. a
Download
Short summary
Turbulence is one of the main drivers of fatigue in wind turbines. There is some debate on how to model the turbulence in normal wind conditions in the design phase. To address such debates, we study the fatigue load distribution and reliability following different models of the International Electrotechnical Commission 61400-1 standard. The results show the lesser importance of load uncertainty due to turbulence distribution compared to the uncertainty of material resistance and Miner’s rule.
Altmetrics
Final-revised paper
Preprint