Articles | Volume 10, issue 4
https://doi.org/10.5194/wes-10-631-2025
https://doi.org/10.5194/wes-10-631-2025
Research article
 | 
04 Apr 2025
Research article |  | 04 Apr 2025

Numerical investigation of regenerative wind farms featuring enhanced vertical energy entrainment

YuanTso Li, Wei Yu, Andrea Sciacchitano, and Carlos Ferreira

Related authors

On the wake re-energization of the X-Rotor vertical-axis wind turbine via the vortex-generator strategy
David Bensason, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-3,https://doi.org/10.5194/wes-2025-3, 2025
Preprint under review for WES
Short summary
Experimental demonstration of regenerative wind farming using a high-density layout of VAWTs
David Bensason, Jayant Mulay, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-177,https://doi.org/10.5194/wes-2024-177, 2025
Revised manuscript under review for WES
Short summary
Proof of concept for multirotor systems with vortex-generating modes for regenerative wind energy: a study based on numerical simulations and experimental data
Flavio Avila Correia Martins, Alexander van Zuijlen, and Carlos Simão Ferreira
Wind Energ. Sci., 10, 41–58, https://doi.org/10.5194/wes-10-41-2025,https://doi.org/10.5194/wes-10-41-2025, 2025
Short summary
Near wake behavior of an asymmetric wind turbine rotor
Pin Chun Yen, Wei Yu, and Fulvio Scarano
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-122,https://doi.org/10.5194/wes-2024-122, 2024
Revised manuscript under review for WES
Short summary
Experimental analysis of a horizontal-axis wind turbine with swept blades using PIV data
Erik Fritz, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1617–1629, https://doi.org/10.5194/wes-9-1617-2024,https://doi.org/10.5194/wes-9-1617-2024, 2024
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Convergence and efficiency of global bases using proper orthogonal decomposition for capturing wind turbine wake aerodynamics
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025,https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Direct integration of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer effects
Karim Ali, Pablo Ouro, and Tim Stallard
Wind Energ. Sci., 10, 511–533, https://doi.org/10.5194/wes-10-511-2025,https://doi.org/10.5194/wes-10-511-2025, 2025
Short summary
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby, Takafumi Nishino, Luca Lanzilao, Thomas D. Dunstan, and Johan Meyers
Wind Energ. Sci., 10, 435–450, https://doi.org/10.5194/wes-10-435-2025,https://doi.org/10.5194/wes-10-435-2025, 2025
Short summary
Proof of concept for multirotor systems with vortex-generating modes for regenerative wind energy: a study based on numerical simulations and experimental data
Flavio Avila Correia Martins, Alexander van Zuijlen, and Carlos Simão Ferreira
Wind Energ. Sci., 10, 41–58, https://doi.org/10.5194/wes-10-41-2025,https://doi.org/10.5194/wes-10-41-2025, 2025
Short summary
Modeling the effects of active wake mixing on wake behavior through large scale coherent structures
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, and Marc Henry de Frahan
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-155,https://doi.org/10.5194/wes-2024-155, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Andersen, S. J., Sørensen, J. N., Ivanell, S., and Mikkelsen, R. F.: Comparison of engineering wake models with CFD simulations, J. Phys. Conf. Ser., 524, 012161, https://doi.org/10.1088/1742-6596/524/1/012161, 2014. a
Anderson, J.: EBOOK: Fundamentals of Aerodynamics (SI units), McGraw hill, ISBN 978-1-259-01028-6, 2011. a, b, c, d
Avila Correia Martins, F., van Zuijlen, A., and Simão Ferreira, C.: Proof of concept for multirotor systems with vortex-generating modes for regenerative wind energy: a study based on numerical simulations and experimental data, Wind Energ. Sci., 10, 41–58, https://doi.org/10.5194/wes-10-41-2025, 2025. a, b, c
Bachant, P., Goude, A., daa-mec, and Wosnik, M.: turbinesFoam/turbinesFoam: v0.1.1, Zenodo [code], https://doi.org/10.5281/zenodo.3542301, 2019. a
Bader, S. H., Inguva, V., and Perot, J.: Improving the efficiency of wind farms via wake manipulation, Wind Energy, 21, 1239–1253, 2018. a, b, c
Download
Short summary
A novel wind farm concept, called a regenerative wind farm, is investigated numerically. This concept tackles the significant wake interaction losses among traditional wind farms. Our results show that regenerative wind farms can greatly reduce these losses, boosting power output per unit surface. Unlike traditional farms with three-bladed wind turbines, regenerative farms use multi-rotor systems with lifting devices (MRSLs). This unconventional design effectively reduces wake losses.
Share
Altmetrics
Final-revised paper
Preprint