Articles | Volume 10, issue 4
https://doi.org/10.5194/wes-10-827-2025
https://doi.org/10.5194/wes-10-827-2025
Research article
 | 
30 Apr 2025
Research article |  | 30 Apr 2025

Coleman-free aero-elastic stability methods for three- and two-bladed floating wind turbines

Bogdan Pamfil, Henrik Bredmose, and Taeseong Kim

Related authors

Grand challenges in the design, manufacture, and operation of future wind turbine systems
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023,https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
Mohammad Youssef Mahfouz, Climent Molins, Pau Trubat, Sergio Hernández, Fernando Vigara, Antonio Pegalajar-Jurado, Henrik Bredmose, and Mohammad Salari
Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021,https://doi.org/10.5194/wes-6-867-2021, 2021
Short summary
Performance study of the QuLAF pre-design model for a 10 MW floating wind turbine
Freddy J. Madsen, Antonio Pegalajar-Jurado, and Henrik Bredmose
Wind Energ. Sci., 4, 527–547, https://doi.org/10.5194/wes-4-527-2019,https://doi.org/10.5194/wes-4-527-2019, 2019
Short summary
An efficient frequency-domain model for quick load analysis of floating offshore wind turbines
Antonio Pegalajar-Jurado, Michael Borg, and Henrik Bredmose
Wind Energ. Sci., 3, 693–712, https://doi.org/10.5194/wes-3-693-2018,https://doi.org/10.5194/wes-3-693-2018, 2018
Short summary
A model for quick load analysis for monopile-type offshore wind turbine substructures
Signe Schløer, Laura Garcia Castillo, Morten Fejerskov, Emanuel Stroescu, and Henrik Bredmose
Wind Energ. Sci., 3, 57–73, https://doi.org/10.5194/wes-3-57-2018,https://doi.org/10.5194/wes-3-57-2018, 2018
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Analysis and calibration of optimal power balance rotor-effective wind speed estimation schemes for large-scale wind turbines
Atindriyo Kusumo Pamososuryo, Fabio Spagnolo, and Sebastiaan Paul Mulders
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-158,https://doi.org/10.5194/wes-2024-158, 2024
Revised manuscript accepted for WES
Short summary
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024,https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Extension of the Langevin power curve analysis by separation per operational state
Christian Wiedemann, Hendrik Bette, Matthias Wächter, Jan A. Freund, Thomas Guhr, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-52,https://doi.org/10.5194/wes-2024-52, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW reference wind turbine, DTU Wind Energy Report-I-0092, 5, 2013. a, b
Bauchau, O. and Nikishkov, Y.: An Implicit Floquet Analysis for Rotorcraft Stability Evaluation, J. Amer. Helicopter Soc., 46, 200–209, https://doi.org/10.4050/JAHS.46.200, 2001. a
Bir, G.: Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7–10 January 2008, https://doi.org/10.2514/6.2008-1300, 2008. a
Borg, M., Pegalajar-Jurado, A., Stiesdal, H., Madsen, F., Nielsen, T., Mikkelsen, R., Mirzaei, M., Lomholt, A., and Bredmose, H.: Dynamic response analysis of the TetraSpar floater in waves: Experiment and numerical reproduction, Mar. Struct., 94, 103546, https://doi.org/10.1016/j.marstruc.2023.103546, 2024. a
Bortolotti, P., Chetan, M., Branlard, E., Jonkman, J., Platt, A., Slaughter, D., and Rinker, J.: Wind Turbine Aeroelastic Stability in OpenFAST, J. Phys. Conf. Ser., 2767, 022018, https://doi.org/10.1088/1742-6596/2767/2/022018, 2024. a
Download
Short summary
A floating wind turbine time domain model, which considers dynamic stall, is used to develop Coleman-free aero-elastic stability analysis methods, namely Hill's and Floquet's. We clarify how the floater tilt is involved in the stability analysis, show damping effects of aerodynamic states, prove that results of both methods agree and can reproduce the forward- and backward-whirling rotor modes in a Coleman-based analysis, and demonstrate that both methods can be applied to a two-bladed rotor.
Share
Altmetrics
Final-revised paper
Preprint