Articles | Volume 3, issue 1
Wind Energ. Sci., 3, 97–105, 2018
https://doi.org/10.5194/wes-3-97-2018
Wind Energ. Sci., 3, 97–105, 2018
https://doi.org/10.5194/wes-3-97-2018

Research article 14 Mar 2018

Research article | 14 Mar 2018

Friction torque of wind-turbine pitch bearings – comparison of experimental results with available models

Matthias Stammler et al.

Related authors

Fatigue lifetime calculation of wind turbine blade bearings considering blade-dependent load distribution
Oliver Menck, Matthias Stammler, and Florian Schleich
Wind Energ. Sci., 5, 1743–1754, https://doi.org/10.5194/wes-5-1743-2020,https://doi.org/10.5194/wes-5-1743-2020, 2020
Short summary

Related subject area

Material science and structural mechanics
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios
Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021,https://doi.org/10.5194/wes-6-677-2021, 2021
Short summary
Constructing fast and representative analytical models of wind turbine main bearings
James Stirling, Edward Hart, and Abbas Kazemi Amiri
Wind Energ. Sci., 6, 15–31, https://doi.org/10.5194/wes-6-15-2021,https://doi.org/10.5194/wes-6-15-2021, 2021
Short summary
Development of a numerical model of a novel leading edge protection component for wind turbine blades
William Finnegan, Priya Dasan Keeryadath, Rónán Ó Coistealbha, Tomas Flanagan, Michael Flanagan, and Jamie Goggins
Wind Energ. Sci., 5, 1567–1577, https://doi.org/10.5194/wes-5-1567-2020,https://doi.org/10.5194/wes-5-1567-2020, 2020
Short summary
Finite element simulations for investigating the strength characteristics of a 5 m composite wind turbine blade
Can Muyan and Demirkan Coker
Wind Energ. Sci., 5, 1339–1358, https://doi.org/10.5194/wes-5-1339-2020,https://doi.org/10.5194/wes-5-1339-2020, 2020
Short summary
Simplified support structure design for multi-rotor wind turbine systems
Sven Störtenbecker, Peter Dalhoff, Mukunda Tamang, and Rudolf Anselm
Wind Energ. Sci., 5, 1121–1128, https://doi.org/10.5194/wes-5-1121-2020,https://doi.org/10.5194/wes-5-1121-2020, 2020
Short summary

Cited articles

Baly, H.: Reibung fettgeschmierter Wälzlager, PhD-Thesis, IMKT, Leibniz Universität Hannover, Hannover, 2005. 
Burton, T.: Wind energy handbook, 2nd Edn., Wiley, Chichester, New York, 2011. 
Daidie, A., Chaib, Z., and Ghosn, A.: 3D Simplified Finite Elements Analysis of Load and Contact Angle in a Slewing Ball Bearing, J. Mech. Design, 130, 8 pp., 2008. 
Dowson, D. and Hamrock, B. J.: Isothermal Elastohydrodynamic Lubrication of point Contacts: Part III: Fully flooded results, J. Lubr. Technol., 99, 264–276, 1977. 
FVA: Wälzlagerreibung Fettschmierung: Reibung fettgeschmierter Wälzlager, Forschungsvorhaben 388/I, Frankfurt, 2005. 
Download
Short summary
Modern wind turbines all share the ability to turn (pitch) the blades around their main axis. By pitching the blades, the aerodynamic forces created by the blades are controlled. Rolling bearings, consisting of two steel rings and balls that roll on raceways between them, are used to allow pitching. To design pitch drives, it is necessary to know the losses within the bearings. This article describes how such losses have been measured and compares them with calculation models.