Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 0.6 CiteScore
    0.6
  • h5-index value: 13 h5-index 13
WES | Articles | Volume 5, issue 2
Wind Energ. Sci., 5, 503–517, 2020
https://doi.org/10.5194/wes-5-503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 5, 503–517, 2020
https://doi.org/10.5194/wes-5-503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Apr 2020

Research article | 20 Apr 2020

The effects of blade structural model fidelity on wind turbine load analysis and computation time

Ozan Gözcü and David R. Verelst

Related authors

Differences in damping of edgewise whirl modes operating an upwind turbine in a downwind configuration
Gesine Wanke, Leonardo Bergami, and David Robert Verelst
Wind Energ. Sci., 5, 929–944, https://doi.org/10.5194/wes-5-929-2020,https://doi.org/10.5194/wes-5-929-2020, 2020
Short summary
A surrogate model approach for associating wind farm load variations with turbine failures
Laura Schröder, Nikolay Krasimirov Dimitrov, and David Robert Verelst
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-79,https://doi.org/10.5194/wes-2020-79, 2020
Revised manuscript accepted for WES
Short summary
Re-design of an upwind rotor for a downwind configuration: design changes and cost evaluation
Gesine Wanke, Leonardo Bergami, Frederik Zahle, and David Robert Verelst
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-102,https://doi.org/10.5194/wes-2019-102, 2020
Preprint under review for WES
Short summary
Modal properties and stability of bend–twist coupled wind turbine blades
Alexander R. Stäblein, Morten H. Hansen, and David R. Verelst
Wind Energ. Sci., 2, 343–360, https://doi.org/10.5194/wes-2-343-2017,https://doi.org/10.5194/wes-2-343-2017, 2017
Short summary

Related subject area

Material science and structural mechanics
Beamlike models for the analyses of curved, twisted and tapered horizontal-axis wind turbine (HAWT) blades undergoing large displacements
Giovanni Migliaccio, Giuseppe Ruta, Stefano Bennati, and Riccardo Barsotti
Wind Energ. Sci., 5, 685–698, https://doi.org/10.5194/wes-5-685-2020,https://doi.org/10.5194/wes-5-685-2020, 2020
Short summary
A novel rotor blade fatigue test setup with elliptical biaxial resonant excitation
David Melcher, Moritz Bätge, and Sebastian Neßlinger
Wind Energ. Sci., 5, 675–684, https://doi.org/10.5194/wes-5-675-2020,https://doi.org/10.5194/wes-5-675-2020, 2020
Short summary
Simplified support structure design for multi rotor wind turbine systems
Sven Störtenbecker, Peter Dalhoff, Mukunda Tamang, and Rudolf Anselm
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-46,https://doi.org/10.5194/wes-2020-46, 2020
Revised manuscript accepted for WES
Short summary
A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection
Edward Hart, Benjamin Clarke, Gary Nicholas, Abbas Kazemi Amiri, James Stirling, James Carroll, Rob Dwyer-Joyce, Alasdair McDonald, and Hui Long
Wind Energ. Sci., 5, 105–124, https://doi.org/10.5194/wes-5-105-2020,https://doi.org/10.5194/wes-5-105-2020, 2020
Short summary
Determination of natural frequencies and mode shapes of a wind turbine rotor blade using Timoshenko beam elements
Evgueni Stanoev and Sudhanva Kusuma Chandrashekhara
Wind Energ. Sci., 4, 57–69, https://doi.org/10.5194/wes-4-57-2019,https://doi.org/10.5194/wes-4-57-2019, 2019
Short summary

Cited articles

DVN GL: BLADED Theory Manual version 4.9, Tech. rep., Garrad Hassan and Partners Ltd, Bristol, UK, 2018. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, Tech. Rep. Report-I-0092, DTU Wind Energy, 2013. a, b
Beardsell, A., Collier, W., and Han, T.: Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed, J. Phys. Conf. Ser., 753, 042002, https://doi.org/10.1088/1742-6596/753/4/042002, 2016. a
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. Rep. NREL/TP-5000-73492, National Renewable Energy Lab. (NREL), Golden, CO (United States), https://doi.org/10.2172/1529216, 2019. a, b, c
Cardona, A. and Géradin, M.: Flexible multibody dynamics: a finite element approach, John Wiley, Chichester, UK, 2001. a
Publications Copernicus
Download
Short summary
Geometrically nonlinear blade modeling effects on the turbine loads and computation time are investigated in an aero-elastic code based on multibody formulation. A large number of fatigue load cases are used in the study. The results show that the nonlinearities become prominent for large and flexible blades. It is possible to run nonlinear models without significant increase in computational time compared to the linear model by changing the matrix solver type from dense to sparse.
Geometrically nonlinear blade modeling effects on the turbine loads and computation time are...
Citation