Articles | Volume 6, issue 2
https://doi.org/10.5194/wes-6-367-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/wes-6-367-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Condition monitoring of roller bearings using acoustic emission
Daniel Cornel
CORRESPONDING AUTHOR
Chair for Wind Power Drives (CWD), RWTH Aachen University, 52074 Aachen, Germany
Francisco Gutiérrez Guzmán
Chair for Wind Power Drives (CWD), RWTH Aachen University, 52074 Aachen, Germany
Georg Jacobs
Chair for Wind Power Drives (CWD), RWTH Aachen University, 52074 Aachen, Germany
Stephan Neumann
Chair for Wind Power Drives (CWD), RWTH Aachen University, 52074 Aachen, Germany
Related authors
No articles found.
Kayacan Kestel, Xavier Chesterman, Donatella Zappalá, Simon Watson, Mingxin Li, Edward Hart, James Carroll, Yolanda Vidal, Amir R. Nejad, Shawn Sheng, Yi Guo, Matthias Stammler, Florian Wirsing, Ahmed Saleh, Nico Gregarek, Thao Baszenski, Thomas Decker, Martin Knops, Georg Jacobs, Benjamin Lehmann, Florian König, Ines Pereira, Pieter-Jan Daems, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-168, https://doi.org/10.5194/wes-2025-168, 2025
Preprint under review for WES
Short summary
Short summary
Wind energy use has been rapidly expanding worldwide in recent years. Driven by global decarbonization goals and energy security concerns, this growth is expected to continue. To achieve these targets, production costs must decrease, with operation and maintenance being major contributors. This paper reviews current and emerging technologies for monitoring wind turbine drivetrains and highlights key academic and industrial challenges that may hinder progress.
Christian Hollas, Georg Jacobs, Vitali Züch, Julian Röder, Moritz Gouverneur, Niklas Reinisch, David Bailly, and Alexander Gramlich
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-94, https://doi.org/10.5194/wes-2025-94, 2025
Preprint under review for WES
Short summary
Short summary
Hollow forging and air hardening ductile steel enable higher power densities for wind turbine main bearings units. For a 2.3 MW base load-optimised wind turbine, a 37 % increase in rotor shaft power density was achieved compared to a casted shaft. By using green, air hardening steel, hollow forging achieves a comparable global warming potential to casting. The economic viability of hollow forging is not given for the current surcharges found in small series production.
Amin Loriemi, Georg Jacobs, Vitali Züch, Timm Jakobs, and Dennis Bosse
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-75, https://doi.org/10.5194/wes-2022-75, 2023
Preprint withdrawn
Short summary
Short summary
In the last decades, the size of wind turbines has continuously increased. The increasing rotor diameter results in higher loads acting on the main bearings of wind turbines. In this study, it is discussed how these loads can be estimated using accessible sensor signals and regression models. Therefore, measurement data has been acquired on a full-scale wind turbine test bench. It is shown that linear regression using displacement signals provides good accuracy in estimating main bearing loads.
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022, https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Short summary
This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the energy conversion systems transferring the kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps.
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021, https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary
Short summary
Wind farm sites in complex terrain are subject to local wind phenomena, which are difficult to quantify but have a huge impact on a wind turbine's annual energy production. Therefore, a wind sensor was applied on an unmanned aerial vehicle and validated against stationary wind sensors with good agreement. A measurement over complex terrain showed local deviations from the mean wind speed of approx. ± 30 %, indicating the importance of an extensive site evaluation to reduce investment risk.
Cited articles
Al-Ghamd, A. M. and Mba, D.: A comparative experimental study on the use of
acoustic emission and vibration analysis for bearing defect identification
and estimation of defect size, Mech. Syst. and Signal Pr., 20,
1537–1571, https://doi.org/10.1016/j.ymssp.2004.10.013, 2006.
Barteldes, S., Walther, F., and Holweger, W.: Wälzlagerdiagnose und
Detektion von WEC mit Barkhausen-Rauschen und Hochfrequenz-Impuls-Messung, https://doi.org/10.13140/2.1.3910.3047,
2014.
Bongardt, C.: Wälzlagergraufleckigkeit, Dissertation, Verlagsgruppe
Mainz GmbH, Aachen, ISBN 978-3-95886-089-6, 2015.
Bruzelius, K. and Mba, D.: An initial investigation on the potential
applicability of Acoustic Emission to rail track fault detection, NDT&E Int., 37, 507–516, https://doi.org/10.1016/j.ndteint.2004.02.001,
2004.
Caesarendra, W., Kosasih, B., Tieu, A. K., Zhu, H., Moodie, C. A. S., and
Zhu, Q.: Acoustic emission-based condition monitoring methods: Review and
application for low speed slew bearing, Mech. Syst. Signal Pr., 72–73, 134–159, https://doi.org/10.1016/j.ymssp.2015.10.020,
2016.
Choudhury, A. and Tandon, N.: Application of acoustic emission technique for
the detection of defects in rolling element bearings, Tribol.
Int., 33, 39–45, https://doi.org/10.1016/S0301-679X(00)00012-8,
2000.
Cockerill, A., Clarke, A., Pullin, R., Bradshaw, T., Cole, P., and Holford,
K. M.: Determination of rolling element bearing condition via acoustic
emission, P. I. Mech. Eng. J-J. Eng., 230, 1377–1388,
https://doi.org/10.1177/1350650116638612, 2016.
Cockerill, A.: Damage Detection of Rotating Machinery, available at: http://orca.cf.ac.uk/id/eprint/105671 (last access: 29 June 2019), 2017.
Cornel, D., Guzmán, F. G., Jacobs, G., and Neumann, S.: Acoustic Response of Roller Bearings Under Critical Operating Conditions, in: Engineering Assets and Public Infrastructures in the Age of Digitalization, Lecture Notes in Mechanical Engineering, edited by: Liyanage, J., Amadi-Echendu, J., and Mathew, J., Springer, Cham, https://doi.org/10.1007/978-3-030-48021-9_82, 2020.
Couturier, J. and Mba, D.: Operational Bearing Parameters and Acoustic
Emission Generation, J. Vib. Acoust., 130, 24502,
https://doi.org/10.1115/1.2776339, 2008.
Czichos, H. and Habig, K.-H.: Tribologie-Handbuch: Tribometrie,
Tribomaterialien, Tribotechnik, Springer Fachmedien Wiesbaden, Wiesbaden,
794 pp., 2015.
Danielsen, H. K., Gutiérrez Guzmán, F., Dahl, K. V., Li, Y. J., Wu,
J., Jacobs, G., Burghardt, G., Fæster, S., Alimadadi, H., Goto, S.,
Raabe, D., and Petrov, R.: Multiscale characterization of White Etching
Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig, Wear,
370–371, 73–82, https://doi.org/10.1016/j.wear.2016.11.016, 2017.
Danielsen, H. K., Gutiérrez Guzmán, F., Muskulus, M., Rasmussen, B.
H., Shirani, M., Cornel, D., Sauvage, P., Wu, J., Petrov, R., and Jacobs,
G.: FE8 type laboratory testing of white etching crack (WEC) bearing failure
mode in 100Cr6, Wear, 434–435, 202962,
https://doi.org/10.1016/j.wear.2019.202962, 2019.
Deutsches Institut für Normung e. V.: Testing of lubricants –
Mechanical-dynamic testing in the roller bearing test apparatus FE8: Part 1:
General working principles, Beuth Verlag GmbH, Berlin, 11 pp., 2016.
DGZfP: Kompendium Schallemissionsprüfung Acoustic Emission Testing (AT):
Grundlagen, Verfahren und praktische Anwendung, available at: http://www.dgzfp.de/Portals/24/PDFs/FA/KompendiumAT.pdf (last access: 11 July 2019), 2011.
Dowson, D. and Higginson, G. R.: Elastohydrodynamic lubrication: The
Fundamentals of Roller and Gear Lubrication, Pergamon Press, London, 124 pp., https://doi.org/10.1016/0043-1648(67)90018-X,
1966.
Eftekharnejad, B., Carrasco, M. R., Charnley, B., and Mba, D.: The
application of spectral kurtosis on Acoustic Emission and vibrations from a
defective bearing, Mech. Syst. Signal Pr., 25, 266–284,
https://doi.org/10.1016/j.ymssp.2010.06.010, 2011.
Elasha, F., Greaves, M., Mba, D., and Fang, D.: A comparative study of the
effectiveness of vibration and acoustic emission in diagnosing a defective
bearing in a planetry gearbox, Appl. Acoust., 115, 181–195,
https://doi.org/10.1016/j.apacoust.2016.07.026, 2017.
Elforjani, M.: Diagnosis and prognosis of slow speed bearing behavior under
grease starvation condition, Struct. Health Monit., 17, 532–548,
https://doi.org/10.1177/1475921717704620, 2018.
Elforjani, M. and Mba, D.: Detecting natural crack initiation and growth in
slow speed shafts with the Acoustic Emission technology, Eng. Fail. Anal., 16, 2121–2129, https://doi.org/10.1016/j.engfailanal.2009.02.005,
2009.
Elforjani, M. and Mba, D.: Condition Monitoring of Slow-Speed Shafts and
Bearings with Acoustic Emission, Strain, 47, 350–363, 2011.
Evans, M.-H.: An updated review: White etching cracks (WECs) and axial
cracks in wind turbine gearbox bearings, Mater. Sci. Tech., 32, 1133–1169,
1–37, https://doi.org/10.1080/02670836.2015.1133022, 2015.
Ferrando Chacon, J. L., Artigao Andicoberry, E., Kappatos, V., Asfis, G.,
Gan, T.-H., and Balachandran, W.: Shaft angular misalignment detection using
acoustic emission, Appl. Acoust., 85, 12–22,
https://doi.org/10.1016/j.apacoust.2014.03.018, 2014.
Ferrando Chacon, J. L., Kappatos, V., Balachandran, W., and Gan, T.-H.: A
novel approach for incipient defect detection in rolling bearings using
acoustic emission technique, Appl. Acoust., 89, 88–100,
https://doi.org/10.1016/j.apacoust.2014.09.002, 2015.
Ferrari, G. and Gómez, M. P.: Correlation Between Acoustic Emission,
Thrust and Tool Wear in Drilling, Proc. Mater. Sci., 8, 693–701,
https://doi.org/10.1016/j.mspro.2015.04.126, 2015.
Filippov, A. V., Rubtsov, V. E., and Tarasov, S. Y.: Acoustic emission study
of surface deterioration in tribocontacting, Appl. Acoust., 117,
106–112, https://doi.org/10.1016/j.apacoust.2016.11.007, 2017.
Fritz, M., Burger, W., and Albers, A.: Schadensfrüherkennung an geschmierten Gleitkontakten mittels Schallemissionsanalyse, Tribologie Fachtagung, 1. Jg., p. 30-1, 2001
Gutiérrez Guzmán, F., Özel, M., Jacobs, G., Burghardt, G.,
Broeckmann, C., and Janitzky, T.: Influence of Slip and Lubrication Regime
on the Formation of White Etching Cracks on a Two-Disc Test Rig, Lubricants,
6, 8, https://doi.org/10.3390/lubricants6010008, 2018.
Gutiérrez Guzmán, F., Sous, C., van Lier, H., and Jacobs, G.: An
energetic approach for the prognosis of thermally induced white etching
layers in bearing steel 100CrMn6, Tribol. Int., 143, 106096,
https://doi.org/10.1016/j.triboint.2019.106096, 2020.
Han, Z., Luo, H., Cao, J., and Wang, H.: Acoustic emission during fatigue
crack propagation in a micro-alloyed steel and welds, Mat. Sci.
Eng. A, 528, 7751–7756, https://doi.org/10.1016/j.msea.2011.06.065,
2011.
Leaman, F., Hinderer, S., Baltes, R., Clausen, E., Rieckhoff, B., Schelenz,
R., and Jacobs, G.: Acoustic Emission Source Localization in Ring Gears from
Wind Turbine Planetary Gearboxes, Forsch. Ingenieurwes., 83, 43–52,
https://doi.org/10.1007/s10010-018-00296-4, 2019.
Marfo, A., Chen, Z., and Li, J.: Acoustic emission analysis of fatigue crack
growth in steel structures, Journal of civil engineering and construction Technology, 2013, 4. Jg., Nr. 7, 239–249, 2013.
Miettinen, J. and Andersson, P.: Acoustic emission of rolling bearings
lubricated with contaminated grease, Tribol. Int., 33, 777–787,
https://doi.org/10.1016/S0301-679X(00)00124-9, 2000.
Mirhadizadeh, S. A., Moncholi, E. P., and Mba, D.: Influence of operational
variables in a hydrodynamic bearing on the generation of acoustic emission,
Tribol. Int., 43, 1760–1767,
https://doi.org/10.1016/j.triboint.2010.03.003, 2010.
Mokhtari, N., Grzeszkowski, M., and Gühmann, C.: Vibration Signal
Analysis for the Lifetime-Prediction and Failure Detection of Future
Turbofan Components, J. Eng. Mech., 37, 422–431, https://doi.org/10.24352/UB.OVGU-2017-118, 2017.
Mokhtari, N., Gühmann, C., and Nowoisky, S.: Approach for the
Degradation of Hydrodynamic Journal Bearings based on Acoustic Emission
Feature Change: 11–13 June 2018, IEEE, Piscataway, NJ, 1–5, 2018.
Morhain, A. and Mba, D.: Bearing defect diagnosis and acoustic emission, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217, 257–272, https://doi.org/10.1243/135065003768618614, 2003.
Morton, T. M., Harrington, R. M., and Bjeletich, J. G.: Acoustic emissions of fatigue crack growth, Eng. Fract. Mech., 5.3, 691–697, 1973.
Physical Acoustics Corporation: Acoustic Emission Measurement training materials, available at:
https://www.physicalacoustics.com/, last access: 12 November 2015.
Poddar, S. and Tandon, N.: Detection of particle contamination in journal
bearing using acoustic emission and vibration monitoring techniques,
Tribol. Int., 134, 154–164,
https://doi.org/10.1016/j.triboint.2019.01.050, 2019.
Qu, Y., He, D., Yoon, J., van Hecke, B., Bechhoefer, E., and Zhu, J.:
Gearbox tooth cut fault diagnostics using acoustic emission and vibration
sensors – a comparative study, Sensors, 14, 1372–1393,
https://doi.org/10.3390/s140101372, 2014.
Roberts, T. M. and Talebzadeh, M.: Fatigue life prediction based on crack
propagation and acoustic emission count rates, J. Constr.
Steel Res., 59, 679–694, https://doi.org/10.1016/S0143-974X(02)00065-2,
2003.
Scheer, C., Reimche, W., and Bach, F.-W.: Early fault detection at gear units by acoustic emission and wavelet analysis, J. Acoust. Emiss, 25, 331–340, 2007.
Schnabel, S., Marklund, P., Larsson, R., and Golling, S.: The detection of
plastic deformation in rolling element bearings by acoustic emission,
Tribol. Int., 110, 209–215,
https://doi.org/10.1016/j.triboint.2017.02.021, 2017.
Sheng, S.: Wind turbine gearbox reliability database, condition monitoring, and operation and maintenance research update, No. NREL/PR-5000-66028, National Renewable Energy Lab. (NREL), Golden, CO, United States, 2015.
Shiroishi, J., Li, Y., Liang, S., Kurfess, T., and Danyluk, S.: Bearing
condition diagnostics via vibration and Acoustic Emission measurements,
Mech. Syst. and Signal Pr., 11, 693–705,
https://doi.org/10.1006/mssp.1997.0113, 1997.
Singh, P. J., Mukhopadhyay, C. K., Jayakumar, T., Mannan, S. L., and Raj,
B.: Understanding fatigue crack propagation in AISI 316 (N) weld using
Elber's crack closure concept: Experimental results from GCMOD and acoustic
emission techniques, International Journal of Fatigue, 29, 2170–2179,
https://doi.org/10.1016/j.ijfatigue.2006.12.013, 2007.
Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T.,
and Ekemb, G.: Wind Turbine Condition Monitoring: State-of-the-Art Review,
New Trends, and Future Challenges, Energies, 7, 2595–2630,
https://doi.org/10.3390/en7042595, 2014.
van Hecke, B., Yoon, J., and He, D.: Low speed bearing fault diagnosis using
acoustic emission sensors, Appl. Acoust., 105, 35–44,
https://doi.org/10.1016/j.apacoust.2015.10.028, 2016.
van Lier, H.: Neuhärtungsgefährdung von Radial-Zylinderrollenlagern
durch Lastaufschaltungen in Betriebspunkten mit Käfigschlupf, Zugl.:
Aachen, Techn. Hochsch., Diss., Mainz, Aachen, 108 pp., 2015.
Venkata Rao, K. and Murthy, P. B. G. S. N.: Modeling and optimization of
tool vibration and surface roughness in boring of steel using RSM, ANN and
SVM, J. Intell. Manuf., 29, 1533–1543,
https://doi.org/10.1007/s10845-016-1197-y, 2018.
Zhang, L., Ozevin, D., Hardman, W., and Timmons, A.: Acoustic Emission
Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized
Sensing, Metals, 7, 242, https://doi.org/10.3390/met7070242, 2017a.
Zhang, Y., Lu, W., and Chu, F.: Planet gear fault localization for wind
turbine gearbox using acoustic emission signals, Renew. Energ., 109,
449–460, https://doi.org/10.1016/j.renene.2017.03.035, 2017b.
Zohora, F.: Evaluation of material crack using acoustic emission technique, Doctoral dissertation, Queensland University of Technology, Queensland, 123 pp., 2016.
Short summary
Roller bearing failures in wind turbines' gearboxes lead to long downtimes and high repair costs. This paper should form a basis for the implementation of a predictive maintenance system. Therefore an acoustic-emission-based condition monitoring system is applied to roller bearing test rigs. The system has shown that a damaged surface can be detected at least ~ 4 % (8 h, regarding the time to failure) and possibly up to ~ 50 % (130 h) earlier than by using the vibration-based system.
Roller bearing failures in wind turbines' gearboxes lead to long downtimes and high repair...
Special issue
Altmetrics
Final-revised paper
Preprint