Articles | Volume 7, issue 3
https://doi.org/10.5194/wes-7-1069-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1069-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Kurt Schaldemose Hansen
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Xiaoli Guo Larsén
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Maarten Paul van der Laan
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Pierre-Elouan Réthoré
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Juan Pablo Murcia Leon
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Related authors
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024, https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Short summary
Wind farms impact local wind and turbulence. To incorporate these effects in weather forecasting, the explicit wake parameterization (EWP) is added to the forecasting model HARMONIE–AROME. We evaluate EWP using flight data above and downstream of wind farms, comparing it with an alternative wind farm parameterization and another weather model. Results affirm the correct implementation of EWP, emphasizing the necessity of accounting for wind farm effects in accurate weather forecasting.
Xiaoli G. Larsén and Jana Fischereit
Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, https://doi.org/10.5194/gmd-14-3141-2021, 2021
Short summary
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.
Thuy-Hai Nguyen, Julian Quick, Pierre-Elouan Réthoré, Jean-François Toubeau, Emmanuel De Jaeger, and François Vallée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-131, https://doi.org/10.5194/wes-2024-131, 2024
Preprint under review for WES
Short summary
Short summary
Current offshore wind farms have been designed to maximize their production of electricity at all times, and not to keep some reserve power in case of unexpected events on the grid. We present a new formulation for designing wind farms to maximize revenues from both energy and reserve markets. It is applied on a real-life wind farm. We show that profits are expected to increase in a significant way for wind farms designed and operated for reserve, with less energy supplied.
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024, https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Short summary
Wind turbines are increasing in size and operate more frequently above the atmospheric surface layer, which requires improved inflow models for numerical simulations of turbine interaction. In this work, a novel steady-state model of the atmospheric boundary layer (ABL) is introduced. Numerical wind turbine flow simulations subjected to shallow and tall ABLs are conducted, and the proposed model shows improved performance compared to other state-of-the-art steady-state models.
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024, https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Short summary
Leading-edge erosion (LEE) can impact wind turbine aerodynamics and wind farm efficiency. This study couples LEE prediction, aerodynamic loss modeling, and wind farm flow modeling to show that LEE's effects on wake dynamics can affect overall energy production. Without preventive initiatives, the effects of LEE increase over time, resulting in significant annual energy production (AEP) loss.
Charbel Assaad, Juan Pablo Murcia Leon, Julian Quick, Tuhfe Göçmen, Sami Ghazouani, and Kaushik Das
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-96, https://doi.org/10.5194/wes-2024-96, 2024
Preprint under review for WES
Short summary
Short summary
This research develops a new method for assessing Hybrid Power Plants (HPPs) profitability, combining wind and battery systems. It addresses the need for an efficient, accurate, and comprehensive operational model by approximating a state-of-the-art Energy Management System (EMS) for spot market power bidding using machine learning. The approach significantly reduces computational demands while maintaining high accuracy. It thus opens new possibilities in terms of optimizing the design of HPPs.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-81, https://doi.org/10.5194/wes-2024-81, 2024
Preprint under review for WES
Short summary
Short summary
The use of a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error of 100 modes in the proper orthogonal decomposition, and the insensitivity to which datasets are included for generating it.
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024, https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Short summary
Tropical cyclone winds are challenging for wind turbines. We analyze a tropical cyclone before landfall in a mesoscale model. The simulated wind speeds and storm structure are sensitive to the boundary parametrization. However, independent of the boundary layer parametrization, the median change in wind speed and wind direction with height is small relative to wind turbine design standards. Strong spatial organization of wind shear and veer along the rainbands may increase wind turbine loads.
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024, https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Short summary
Wind farms impact local wind and turbulence. To incorporate these effects in weather forecasting, the explicit wake parameterization (EWP) is added to the forecasting model HARMONIE–AROME. We evaluate EWP using flight data above and downstream of wind farms, comparing it with an alternative wind farm parameterization and another weather model. Results affirm the correct implementation of EWP, emphasizing the necessity of accounting for wind farm effects in accurate weather forecasting.
Juan Pablo Murcia Leon, Hajar Habbou, Mikkel Friis-Møller, Megha Gupta, Rujie Zhu, and Kaushik Das
Wind Energ. Sci., 9, 759–776, https://doi.org/10.5194/wes-9-759-2024, https://doi.org/10.5194/wes-9-759-2024, 2024
Short summary
Short summary
A methodology for an early design of hybrid power plants (wind, solar, PV, and Li-ion battery storage) consisting of a nested optimization that sizes the components and internal operation optimization. Traditional designs that minimize the levelized cost of energy give worse business cases and do not include storage. Optimal operation balances the increasing revenues and faster battery degradation. Battery degradation and replacement costs are needed to estimate the viability of hybrid projects.
Javier Criado Risco, Rafael Valotta Rodrigues, Mikkel Friis-Møller, Julian Quick, Mads Mølgaard Pedersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 585–600, https://doi.org/10.5194/wes-9-585-2024, https://doi.org/10.5194/wes-9-585-2024, 2024
Short summary
Short summary
Wind energy developers frequently have to face some spatial restrictions at the time of designing a new wind farm due to different reasons, such as the existence of protected natural areas around the wind farm location, fishing routes, and the presence of buildings. Wind farm design has to account for these restricted areas, but sometimes this is not straightforward to achieve. We have developed a methodology that allows for different inclusion and exclusion areas in the optimization framework.
Rafael Valotta Rodrigues, Mads Mølgaard Pedersen, Jens Peter Schøler, Julian Quick, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 321–341, https://doi.org/10.5194/wes-9-321-2024, https://doi.org/10.5194/wes-9-321-2024, 2024
Short summary
Short summary
The use of wind energy has been growing over the last few decades, and further increase is predicted. As the wind energy industry is starting to consider larger wind farms, the existing numerical methods for analysis of small and medium wind farms need to be improved. In this article, we have explored different strategies to tackle the problem in a feasible and timely way. The final product is a set of recommendations when carrying out trade-off analysis on large wind farms.
Julian Quick, Pierre-Elouan Rethore, Mads Mølgaard Pedersen, Rafael Valotta Rodrigues, and Mikkel Friis-Møller
Wind Energ. Sci., 8, 1235–1250, https://doi.org/10.5194/wes-8-1235-2023, https://doi.org/10.5194/wes-8-1235-2023, 2023
Short summary
Short summary
Wind turbine positions are often optimized to avoid wake losses. These losses depend on atmospheric conditions, such as the wind speed and direction. The typical optimization scheme involves discretizing the atmospheric inputs, then considering every possible set of these discretized inputs in every optimization iteration. This work presents stochastic gradient descent (SGD) as an alternative, which randomly samples the atmospheric conditions during every optimization iteration.
Mark Kelly and Maarten Paul van der Laan
Wind Energ. Sci., 8, 975–998, https://doi.org/10.5194/wes-8-975-2023, https://doi.org/10.5194/wes-8-975-2023, 2023
Short summary
Short summary
The turning of the wind with height, which is known as veer, can affect wind turbine performance. Thus far meteorology has only given idealized descriptions of veer, which has not yet been related in a way readily usable for wind energy. Here we derive equations for veer in terms of meteorological quantities and provide practically usable forms in terms of measurable shear (change in wind speed with height). Flow simulations and measurements at turbine heights support these developments.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Camilla Marie Nyborg, Andreas Fischer, Pierre-Elouan Réthoré, and Ju Feng
Wind Energ. Sci., 8, 255–276, https://doi.org/10.5194/wes-8-255-2023, https://doi.org/10.5194/wes-8-255-2023, 2023
Short summary
Short summary
Our article presents a way of optimizing the wind farm operation by keeping the emitted noise level below a defined limit while maximizing the power output. This is done by switching between noise reducing operational modes. The method has been developed by using two different noise models, one more advanced than the other, to study the advantages of each model. Furthermore, the optimization method is applied to different wind farm cases.
Maarten Paul van der Laan, Mads Baungaard, and Mark Kelly
Wind Energ. Sci., 8, 247–254, https://doi.org/10.5194/wes-8-247-2023, https://doi.org/10.5194/wes-8-247-2023, 2023
Short summary
Short summary
Understanding wind turbine wake recovery is important to mitigate energy losses in wind farms. Wake recovery is often assumed or explained to be dependent on the first-order derivative of velocity. In this work we show that wind turbine wakes recover mainly due to the second-order derivative of the velocity, which transport momentum from the freestream towards the wake center. The wake recovery mechanisms and results of a high-fidelity numerical simulation are illustrated using a simple model.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Xiaoli Guo Larsén and Søren Ott
Wind Energ. Sci., 7, 2457–2468, https://doi.org/10.5194/wes-7-2457-2022, https://doi.org/10.5194/wes-7-2457-2022, 2022
Short summary
Short summary
A method is developed for calculating the extreme wind in tropical-cyclone-affected water areas. The method is based on the spectral correction method that fills in the missing wind variability to the modeled time series, guided by best track data. The paper provides a detailed recipe for applying the method and the 50-year winds of equivalent 10 min temporal resolution from 10 to 150 m in several tropical-cyclone-affected regions.
Søren Juhl Andersen and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 2117–2133, https://doi.org/10.5194/wes-7-2117-2022, https://doi.org/10.5194/wes-7-2117-2022, 2022
Short summary
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Mads Baungaard, Stefan Wallin, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 1975–2002, https://doi.org/10.5194/wes-7-1975-2022, https://doi.org/10.5194/wes-7-1975-2022, 2022
Short summary
Short summary
Wind turbine wakes in the neutral atmospheric surface layer are simulated with Reynolds-averaged Navier–Stokes (RANS) using an explicit algebraic Reynolds stress model. Contrary to standard two-equation turbulence models, it can predict turbulence anisotropy and complex physical phenomena like secondary motions. For the cases considered, it improves Reynolds stress, turbulence intensity, and velocity deficit predictions, although a more top-hat-shaped profile is observed for the latter.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022, https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Short summary
Wind turbine wakes are dependent on the atmospheric conditions, and it is therefore important to be able to simulate in various different atmospheric conditions. This paper concerns the specific case of an unstable atmospheric surface layer, which is the lower part of the typical daytime atmospheric boundary layer. A simple flow model is suggested and tested for a range of single-wake scenarios, and it shows promising results for velocity deficit predictions.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Marc Imberger, Xiaoli Guo Larsén, and Neil Davis
Adv. Geosci., 56, 77–87, https://doi.org/10.5194/adgeo-56-77-2021, https://doi.org/10.5194/adgeo-56-77-2021, 2021
Short summary
Short summary
Events like mid-latitude storms with their high winds have an impact on wind energy production and forecasting of such events is crucial. This study investigates the capabilities of a global weather prediction model MPAS and looks at how key parameters like storm intensity, arrival time and duration are represented compared to measurements and traditional methods. It is found that storm intensity is represented well while model drifts negatively influence estimation of arrival time and duration.
Xiaoli G. Larsén and Jana Fischereit
Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, https://doi.org/10.5194/gmd-14-3141-2021, 2021
Short summary
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Short summary
Wind farms operate in the atmospheric boundary layer, and their performance is strongly dependent on the atmospheric conditions. We propose a simple model of the atmospheric boundary layer that can be used as an inflow model for wind farm simulations for isolating a number of atmospheric effects – namely, the change in wind direction with height and atmospheric boundary layer depth. In addition, the simple model is shown to be consistent with two similarity theories.
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021, https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
Short summary
Detailed wind generation simulations of the 2028 Belgian offshore fleet are performed in order to quantify the distribution and extremes of power fluctuations in several time windows. A model validation with respect to the operational data of the 2018 fleet shows that the methodology presented in this article is able to capture the distribution of wind power and its spatiotemporal characteristics. The results show that the standardized generation ramps are expected to be reduced in the future.
Andreas Bechmann, Juan Pablo M. Leon, Bjarke T. Olsen, and Yavor V. Hristov
Wind Energ. Sci., 5, 1679–1688, https://doi.org/10.5194/wes-5-1679-2020, https://doi.org/10.5194/wes-5-1679-2020, 2020
Short summary
Short summary
When assessing wind resources for wind farm development, the first step is to measure the wind from tall meteorological masts. As met masts are expensive, they are not built at every planned wind turbine position but sparsely while trying to minimize the distance. However, this paper shows that it is better to focus on the
similaritybetween the met mast and the wind turbines than the distance. Met masts at similar positions reduce the uncertainty of wind resource assessments significantly.
Maarten Paul van der Laan, Mark Kelly, Rogier Floors, and Alfredo Peña
Wind Energ. Sci., 5, 355–374, https://doi.org/10.5194/wes-5-355-2020, https://doi.org/10.5194/wes-5-355-2020, 2020
Short summary
Short summary
The design of wind turbines and wind farms can be improved by increasing the accuracy of the inflow models representing the atmospheric boundary layer (ABL). In this work we employ numerical simulations of the idealized ABL, which can represent the mean effects of Coriolis and buoyancy forces and surface roughness. We find a new model-based similarity that provides a better understanding of the idealized ABL. In addition, we extend the model to include effects of convective buoyancy forces.
Maarten Paul van der Laan, Søren Juhl Andersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 4, 645–651, https://doi.org/10.5194/wes-4-645-2019, https://doi.org/10.5194/wes-4-645-2019, 2019
Short summary
Short summary
Wind farm layouts are designed by simple engineering wake models, which are fast to compute but also include a high uncertainty. Higher-fidelity models, such as Reynolds-averaged Navier–Stokes, can be used to verify optimized wind farm layouts, although the computational costs are high due to the large number of cases that are needed to calculate the annual energy production. This article presents a new wind turbine control method to speed up the high-fidelity simulations by a factor of 2–3.
Maarten Paul van der Laan, Søren Juhl Andersen, Néstor Ramos García, Nikolas Angelou, Georg Raimund Pirrung, Søren Ott, Mikael Sjöholm, Kim Hylling Sørensen, Julio Xavier Vianna Neto, Mark Kelly, Torben Krogh Mikkelsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 251–271, https://doi.org/10.5194/wes-4-251-2019, https://doi.org/10.5194/wes-4-251-2019, 2019
Short summary
Short summary
Over the past few decades, single-rotor wind turbines have increased in size with the blades being extended toward lengths of 100 m. An alternative upscaling of turbines can be achieved by using multi-rotor wind turbines. In this article, measurements and numerical simulations of a utility-scale four-rotor wind turbine show that rotor interaction leads to increased energy production and faster wake recovery; these findings may allow for the design of wind farms with improved energy production.
Jianting Du, Rodolfo Bolaños, Xiaoli Guo Larsén, and Mark Kelly
Ocean Sci., 15, 361–377, https://doi.org/10.5194/os-15-361-2019, https://doi.org/10.5194/os-15-361-2019, 2019
Short summary
Short summary
Ocean surface waves generated by wind and dissipated by white capping are two important physics processes for numerical wave simulations. In this study, a new pair of wind–wave generation and dissipation source functions is implemented in the wave model SWAN, and it shows better performance in real wave simulations during two North Sea storms. The new source functions can be further used in other wave models for both academic and engineering purposes.
Robert Menke, Nikola Vasiljević, Kurt S. Hansen, Andrea N. Hahmann, and Jakob Mann
Wind Energ. Sci., 3, 681–691, https://doi.org/10.5194/wes-3-681-2018, https://doi.org/10.5194/wes-3-681-2018, 2018
Short summary
Short summary
This study investigates the behaviour of wind turbine wakes in complex terrain. Using six scanning lidars, we measured the wake of a single turbine at the Perdigão site in Portugal in 2015. Our findings show that wake propagation is highly dependent on the atmospheric stability, which is mostly ignored in flow simulation used for wind farm layout design. The wake is lifted up during unstable atmospheric conditions and follows the terrain downwards during stable conditions.
Georg Raimund Pirrung and Maarten Paul van der Laan
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-59, https://doi.org/10.5194/wes-2018-59, 2018
Revised manuscript not accepted
Short summary
Short summary
Wind turbine loading decreases towards the blade tip due to the velocities induced by the tip vortex and the spanwise flow. It has been shown that the tip loss factor applied on the aerodynamic forces should be different for the axial and tangential loading of the turbine due to the rotation of the resulting force vector caused by the induced velocity. The present article contains the derivation of a simple correction for the tangential load factor that takes this rotation into account.
Tobias Ahsbahs, Merete Badger, Patrick Volker, Kurt S. Hansen, and Charlotte B. Hasager
Wind Energ. Sci., 3, 573–588, https://doi.org/10.5194/wes-3-573-2018, https://doi.org/10.5194/wes-3-573-2018, 2018
Short summary
Short summary
Satellites offer wind measurements offshore and can resolve the wind speed on scales of up to 500 m. To date, this data is not routinely used in the industry for planning wind farms. We show that this data can be used to predict local differences in the mean wind speed around the Anholt offshore wind farm. With satellite data, site-specific wind measurements can be introduced early in the planning phase of an offshore wind farm and help decision makers.
Alfredo Peña, Kurt Schaldemose Hansen, Søren Ott, and Maarten Paul van der Laan
Wind Energ. Sci., 3, 191–202, https://doi.org/10.5194/wes-3-191-2018, https://doi.org/10.5194/wes-3-191-2018, 2018
Short summary
Short summary
We analyze the wake of the Anholt offshore wind farm in Denmark by intercomparing models and measurements. We also look at the effect of the land on the wind farm by intercomparing mesoscale winds and measurements. Annual energy production and capacity factor estimates are performed using different approaches. Lastly, the uncertainty of the wake models is determined by bootstrapping the data; we find that the wake models generally underestimate the wake losses.
Maarten Paul van der Laan and Niels Nørmark Sørensen
Wind Energ. Sci., 2, 285–294, https://doi.org/10.5194/wes-2-285-2017, https://doi.org/10.5194/wes-2-285-2017, 2017
Short summary
Short summary
In recent years, wind farms have grown in size and are more frequently placed in wind farm clusters. This means that large-scale effects such as the interaction of the Coriolis force and wind farm wakes are becoming more important for designing energy efficient wind farms. The literature disagrees on the turning direction of a wind farm wake due to the Coriolis force. In this article, we explain why the Coriolis force turns a wind farm wake clockwise in the Northern Hemisphere.
Dalibor Cavar, Pierre-Elouan Réthoré, Andreas Bechmann, Niels N. Sørensen, Benjamin Martinez, Frederik Zahle, Jacob Berg, and Mark C. Kelly
Wind Energ. Sci., 1, 55–70, https://doi.org/10.5194/wes-1-55-2016, https://doi.org/10.5194/wes-1-55-2016, 2016
Short summary
Short summary
Feasibility of a freely available CFD tool, OpenFOAM, in calculating flows of general relevance to the wind industry is investigated by comparing several aspects of its performance to a well-established in-house EllipSys3D solver. The comparison is focused on CFD solver demands regarding grid generation process and computational time.
The quality and accuracy of the achieved results are investigated by conducting the computations using identical/similar solver parameters and numerical setups..
Related subject area
Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Large-eddy simulation of airborne wind energy farms
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Turbulence statistics from three different nacelle lidars
RANS modeling of a single wind turbine wake in the unstable surface layer
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Validation of wind resource and energy production simulations for small wind turbines in the United States
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
The five main influencing factors for lidar errors in complex terrain
Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations
Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions
Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow
Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study
On the measurement of stability parameter over complex mountainous terrain
Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler lidars
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
On turbulence models and lidar measurements for wind turbine control
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Recovery processes in a large offshore wind farm
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
WRF-simulated low-level jets over Iowa: characterization and sensitivity studies
Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Design and analysis of a wake model for spatially heterogeneous flow
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Evaluation of idealized large-eddy simulations performed with the Weather Research and Forecasting model using turbulence measurements from a 250 m meteorological mast
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Offshore wind farm global blockage measured with scanning lidar
Understanding and mitigating the impact of data gaps on offshore wind resource estimates
Investigating the loads and performance of a model horizontal axis wind turbine under reproducible IEC extreme operational conditions
Validation of the dynamic wake meandering model with respect to loads and power production
Method for airborne measurement of the spatial wind speed distribution above complex terrain
Axial induction controller field test at Sedini wind farm
Wake redirection at higher axial induction
An overview of wind-energy-production prediction bias, losses, and uncertainties
Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
Set-point optimization in wind farms to mitigate effects of flow blockage induced by atmospheric gravity waves
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Computational analysis of high-lift-generating airfoils for diffuser-augmented wind turbines
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022, https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022, https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Short summary
In this work, we study parks of large-scale airborne wind energy systems using a virtual flight simulator. The virtual flight simulator combines numerical techniques from flow simulation and kite control. Using advanced control algorithms, the systems can operate efficiently in the park despite turbulent flow conditions. For the three configurations considered in the study, we observe significant wake effects, reducing the power yield of the parks.
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Short summary
This research involves studying the flow around the section of a wind turbine blade, albeit at a lower Reynolds number or flow speed, using wall-resolved large-eddy simulations, a form of computer simulation that resolves the important scales of the flow. Among the many interesting results, it is shown that the energy entering the boundary layer around the airfoil or section of the blade is proportional to the square of the incoming flow turbulence intensity.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022, https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Short summary
We described a new automated method to separate the wind turbine wake from the undisturbed flow. The method relies on the wind speed distribution in the measured wind field to select one specific threshold value and split the measurements into wake and background points. The purpose of the method is to reduce the amount of data required – the proposed algorithm does not need precise information on the wind speed or direction and can run on the image instead of the measured data.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022, https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Short summary
Wind turbine wakes are dependent on the atmospheric conditions, and it is therefore important to be able to simulate in various different atmospheric conditions. This paper concerns the specific case of an unstable atmospheric surface layer, which is the lower part of the typical daytime atmospheric boundary layer. A simple flow model is suggested and tested for a range of single-wake scenarios, and it shows promising results for velocity deficit predictions.
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022, https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary
Short summary
In the future there will be very large wind farm clusters in the German Bight. This study investigates how the wind field is affected by these very large wind farms and how much energy can be extracted by the wind turbines. Very large wind farms do not only reduce the wind speed but can also cause a change in wind direction or temperature. The extractable energy per wind turbine is much smaller for large wind farms than for small wind farms due to the reduced wind speed inside the wind farms.
Lindsay M. Sheridan, Caleb Phillips, Alice C. Orrell, Larry K. Berg, Heidi Tinnesand, Raj K. Rai, Sagi Zisman, Dmitry Duplyakin, and Julia E. Flaherty
Wind Energ. Sci., 7, 659–676, https://doi.org/10.5194/wes-7-659-2022, https://doi.org/10.5194/wes-7-659-2022, 2022
Short summary
Short summary
The small wind community relies on simplified wind models and energy production simulation tools to obtain energy generation expectations. We gathered actual wind speed and turbine production data across the US to test the accuracy of models and tools for small wind turbines. This study provides small wind installers and owners with the error metrics and sources of error associated with using models and tools to make performance estimates, empowering them to adjust expectations accordingly.
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022, https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Short summary
Lidar-assisted control of wind turbines requires a wind field generator capable of simulating wind evolution. Out of this need, we extend the Veers method for 3D wind field generation to 4D and propose a two-step Cholesky decomposition approach. Based on this, we develop a 4D wind field generator – evoTurb – coupled with TurbSim and Mann turbulence generator. We further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide practical suggestions.
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Tobias Klaas-Witt and Stefan Emeis
Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022, https://doi.org/10.5194/wes-7-413-2022, 2022
Short summary
Short summary
Light detection and ranging (lidar) has become a valuable technology to assess the wind resource at hub height of modern wind turbines. However, because of their measurement principle, common lidars suffer from errors at orographically complex, i.e. hilly or mountainous, sites. This study analyses the impact of the five main influencing factors in a non-dimensional, model-based parameter study.
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022, https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
Short summary
Wind turbine wake behavior in hilly terrain depends on various atmospheric conditions. We modeled a wind turbine located on top of a ridge in Portugal during typical nighttime and daytime atmospheric conditions and validated these model results with observational data. During nighttime conditions, the wake deflected downwards following the terrain. During daytime conditions, the wake deflected upwards. These results can provide insight into wind turbine siting and operation in hilly regions.
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Michael F. Howland, Aditya S. Ghate, Jesús Bas Quesada, Juan José Pena Martínez, Wei Zhong, Felipe Palou Larrañaga, Sanjiva K. Lele, and John O. Dabiri
Wind Energ. Sci., 7, 345–365, https://doi.org/10.5194/wes-7-345-2022, https://doi.org/10.5194/wes-7-345-2022, 2022
Short summary
Short summary
Wake steering control, in which turbines are intentionally misaligned with the incident wind, has demonstrated potential to increase wind farm energy. We investigate wake steering control methods in simulations of a wind farm operating in the terrestrial diurnal cycle. We develop a statistical wind direction forecast to improve wake steering in flows with time-varying states. Closed-loop wake steering control increases wind farm energy production, compared to baseline and open-loop control.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022, https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Elena Cantero, Javier Sanz, Fernando Borbón, Daniel Paredes, and Almudena García
Wind Energ. Sci., 7, 221–235, https://doi.org/10.5194/wes-7-221-2022, https://doi.org/10.5194/wes-7-221-2022, 2022
Short summary
Short summary
The impact of atmospheric stability on wind energy is widely demonstrated, so we have to know how to characterise it.
This work based on a meteorological mast located in a complex terrain compares and evaluates different instrument set-ups and methodologies for stability characterisation. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements and practical use in connection with wind energy applications.
Peter Brugger, Corey Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 7, 185–199, https://doi.org/10.5194/wes-7-185-2022, https://doi.org/10.5194/wes-7-185-2022, 2022
Short summary
Short summary
Wind turbines create a wake of reduced wind speeds downstream of the rotor. The wake does not necessarily have a straight, pencil-like shape but can meander similar to a smoke plume. We investigated this wake meandering and observed that the downstream transport velocity is slower than the wind speed contrary to previous assumptions and that the evolution of the atmospheric turbulence over time impacts wake meandering on distances typical for the turbine spacing in wind farms.
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021, https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
Short summary
We validate new high-resolution data set (NORA3) for offshore wind power purposes for the North Sea and the Norwegian Sea. The aim of the validation is to ensure that NORA3 can act as a wind resource data set in the planning phase for future offshore wind power installations in the area of concern. The general conclusion of the validation is that NORA3 is well suited for wind power estimates but gives slightly conservative estimates of the offshore wind metrics.
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021, https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021, https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
Short summary
This study investigates systematic, seasonal biases in the long-term correction of short-term wind measurements (< 1 year). Two popular measure–correlate–predict (MCP) methods yield remarkably different results. Six reanalysis data sets serve as long-term data. Besides experimental results, theoretical findings are presented which link the mechanics of the methods and the properties of the reanalysis data sets to the observations. Finally, recommendations for wind park planners are derived.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021, https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021, https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Short summary
We carry out a probabilistic calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution nacelle-based lidar measurements of the wake flow field. The experimental data were collected from the Scaled Wind Farm Technology (SWiFT) facility in Texas. The analysis includes the velocity deficit, wake-added turbulence, and wake meandering features under various inflow wind and atmospheric-stability conditions.
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021, https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Short summary
Wind turbines extract momentum from atmospheric flow and convert that to electricity. This study explores recovery processes in wind farms that replenish the momentum so that wind farms can continue to function. Experiments with a numerical model show that momentum transport by turbulent eddies from above the wind turbines is the major contributor to recovery except for strong wind conditions and low wind turbine density, where horizontal advection can also play a major role.
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Short summary
As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. We leverage a year of data of two floating lidars to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. We find that almost 100 independent long events occur throughout the year.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021, https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Short summary
Wind farms operate in the atmospheric boundary layer, and their performance is strongly dependent on the atmospheric conditions. We propose a simple model of the atmospheric boundary layer that can be used as an inflow model for wind farm simulations for isolating a number of atmospheric effects – namely, the change in wind direction with height and atmospheric boundary layer depth. In addition, the simple model is shown to be consistent with two similarity theories.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021, https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary
Short summary
We deal with wake redirection, which is a promising approach designed to mitigate turbine–wake interactions which have a negative impact on the performance and lifetime of wind farms. We show that substantial power gains can be obtained by tilting the rotors of spanwise-periodic wind-turbine arrays in the atmospheric boundary layer (ABL). Optimal relative rotor sizes and spanwise spacings exist, which maximize the global power extracted from the wind.
Alfredo Peña, Branko Kosović, and Jeffrey D. Mirocha
Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, https://doi.org/10.5194/wes-6-645-2021, 2021
Short summary
Short summary
We investigate the ability of a community-open weather model to simulate the turbulent atmosphere by comparison with measurements from a 250 m mast at a flat site in Denmark. We found that within three main atmospheric stability regimes, idealized simulations reproduce closely the characteristics of the observations with regards to the mean wind, direction, turbulent fluxes, and turbulence spectra. Our work provides foundation for the use of the weather model in multiscale real-time simulations.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Kamran Shirzadeh, Horia Hangan, Curran Crawford, and Pooyan Hashemi Tari
Wind Energ. Sci., 6, 477–489, https://doi.org/10.5194/wes-6-477-2021, https://doi.org/10.5194/wes-6-477-2021, 2021
Short summary
Short summary
Wind energy systems work coherently in atmospheric flows which are gusty. This causes highly variable power productions and high fatigue loads on the system, which together hold back further growth of the wind energy market. This study demonstrates an alternative experimental procedure to investigate some extreme wind condition effects on wind turbines based on the IEC standard. This experiment can be improved upon and used to develop new control concepts, mitigating the effect of gusts.
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021, https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary
Short summary
Wind farm sites in complex terrain are subject to local wind phenomena, which are difficult to quantify but have a huge impact on a wind turbine's annual energy production. Therefore, a wind sensor was applied on an unmanned aerial vehicle and validated against stationary wind sensors with good agreement. A measurement over complex terrain showed local deviations from the mean wind speed of approx. ± 30 %, indicating the importance of an extensive site evaluation to reduce investment risk.
Ervin Bossanyi and Renzo Ruisi
Wind Energ. Sci., 6, 389–408, https://doi.org/10.5194/wes-6-389-2021, https://doi.org/10.5194/wes-6-389-2021, 2021
Short summary
Short summary
This paper describes the design and field testing of a controller for reducing wake interactions on a wind farm. Reducing the power of some turbines weakens their wakes, allowing other turbines to produce more power so that the total wind farm power may increase. There have been doubts that this is feasible, but these field tests on a full-scale wind farm indicate that this goal has been achieved, also providing convincing validation of the model used for designing the controller.
Carlo Cossu
Wind Energ. Sci., 6, 377–388, https://doi.org/10.5194/wes-6-377-2021, https://doi.org/10.5194/wes-6-377-2021, 2021
Short summary
Short summary
In this study wake redirection and axial-induction control are combined to mitigate turbine–wake interactions, which have a negative impact on the performance and lifetime of wind farms. The results confirm that substantial power gains are obtained when overinduction is combined with tilt control. More importantly, the approach is extended to the case of yaw control, showing that large power gain enhancements are obtained by means of static overinductive yaw control.
Joseph C. Y. Lee and M. Jason Fields
Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021, https://doi.org/10.5194/wes-6-311-2021, 2021
Short summary
Short summary
This review paper evaluates the energy prediction bias in the wind resource assessment process, and the overprediction bias is decreasing over time. We examine the estimated and observed losses and uncertainties in energy production from the literature, according to the proposed framework in the International Electrotechnical Commission 61400-15 standard. The considerable uncertainties call for further improvements in the prediction methodologies and more observations for validation.
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 6, 295–309, https://doi.org/10.5194/wes-6-295-2021, https://doi.org/10.5194/wes-6-295-2021, 2021
Short summary
Short summary
Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting and is especially useful when combined with other forecasting techniques. This study utilizes a popular machine learning algorithm, random forest, in an attempt to predict the forecasting error of a statistical forecasting model. Various atmospheric characteristics are used as random forest inputs in an effort to discern the most useful atmospheric information for this purpose.
Luca Lanzilao and Johan Meyers
Wind Energ. Sci., 6, 247–271, https://doi.org/10.5194/wes-6-247-2021, https://doi.org/10.5194/wes-6-247-2021, 2021
Short summary
Short summary
This research paper investigates the potential of thrust set-point optimization in large wind farms for mitigating gravity-wave-induced blockage effects for the first time, with the aim of increasing the wind-farm energy extraction. The optimization tool is applied to almost 2000 different atmospheric states. Overall, power gains above 4 % are observed for 77 % of the cases.
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Aniruddha Deepak Paranjape, Anhad Singh Bajaj, Shaheen Thimmaiah Palanganda, Radha Parikh, Raahil Nayak, and Jayakrishnan Radhakrishnan
Wind Energ. Sci., 6, 149–157, https://doi.org/10.5194/wes-6-149-2021, https://doi.org/10.5194/wes-6-149-2021, 2021
Short summary
Short summary
This project is a comparative study that takes into consideration various airfoils from the Selig, NACA, and Eppler families and models them as diffusers of the wind turbine. The efficiency of the diffuser-augmented wind turbine can be enhanced by optimizing the geometry of the diffuser shape. Their subsequent performance trends were then analyzed, and the lower-performing airfoils were systematically eliminated to leave us with an optimum design.
Cited articles
Apsley, D. D. and Castro, I. P.: A limited-length-scale K–ϵ model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay.
Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997. a, b
Archer, C. L., Wu, S., Ma, Y., and Jiménez, P. A.: Two corrections for
turbulent kinetic energy generated by wind farms in the WRF model, Mon.
Weather Rev., 148, 1–38, https://doi.org/10.1175/MWR-D-20-0097.1, 2020. a, b, c, d
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Cañadillas, B., Foreman, R., Barth, V., Siedersleben, S., Lampert, A.,
Platis, A., Djath, B., Schulz‐Stellenfleth, J., Bange, J., Emeis, S., and
Neumann, T.: Offshore wind farm wake recovery: Airborne measurements and its
representation in engineering models, Wind Energy, 23, 1249–1265,
https://doi.org/10.1002/we.2484, 2020. a, b, c
Copernicus CMEMS: CMEMS Data Access Portal,
http://my.cmems-du.eu/motu-web/Motu (last access: 20 May 2022), 2022a. a
Copernicus CMEMS: TOPFARM, PyWake, Copernicus CMEMS [code],
https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake (last access: 20 May 2022), 2022b. a
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020. a
Eriksson, O., Lindvall, J., Breton, S.-P., and Ivanell, S.: Wake downstream of the Lillgrund wind farm – A Comparison between LES using the actuator disc method and a Wind farm Parametrization in WRF, J. Phys.: Conf. Ser., 625, 012028, https://doi.org/10.1088/1742-6596/625/1/012028, 2015. a, b
Eriksson, O., Baltscheffsky, M., Breton, S.-P., Söderberg, S., and
Ivanell, S.: The Long distance wake behind Horns Rev I studied using large
eddy simulations and a wind turbine parameterization in WRF, J. Phys.: Conf. Ser., 854, 012012, https://doi.org/10.1088/1742-6596/854/1/012012, 2017. a, b
EWP: EWP, https://gitlab.windenergy.dtu.dk/WRF/EWP, last access: 20 May 2022. a
Fischereit, J., Hansen, K. S., Larsén, X. G., van der Laan, M. P.,
Réthoré, P.-E., and Murcia Leon, J. P.: WRF and PyWake
configuration files for publication “Comparing and validating intra-farm and
farm-to-farm wakes across different mesoscale and high-resolution wake
models”, Zenodo [data set], https://doi.org/10.5281/zenodo.5570396, 2021. a
Gaumond, M., Réthoré, P.-E., Ott, S., Peña, A., Bechmann, A., and
Hansen, K. S.: Evaluation of the wind direction uncertainty and its impact on
wake modeling at the Horns Rev offshore wind farm, Wind Energy, 17, 1169,
https://doi.org/10.1002/we.1625, 2014. a, b
Göçmen, T., Laan, P. V. D., Réthoré, P. E., Diaz, A. P., Larsen, G. C., and Ott, S.: Wind turbine wake models developed at the
technical university of Denmark: A review, Renew. Sustain. Energ. Rev., 60,
752–769, https://doi.org/10.1016/j.rser.2016.01.113, 2016. a
Hansen, K. S., Barthelmie, R. J., Jensen, L. E., and Sommer, A.: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm, Wind Energy, 15, 183–196,
https://doi.org/10.1002/we.512, 2012. a
Hansen, K. S., Réthoré, P.-E., Palma, J., Hevia, B. G., Prospathopoulos, J., Peña, A., Ott, S., Schepers, G., Palomares, A.,
van der Laan, M. P., and Volker, P.: Simulation of wake effects between two
wind farms, J. Phys.: Conf. Ser., 625, 012008, https://doi.org/10.1088/1742-6596/625/1/012008, 2015. a, b, c, d, e
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on single levels from 1979 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Honnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers, R.,
Plant, R. S., Shin, H. H., Tomassini, L., and Zhou, B.: The Atmospheric
Boundary Layer and the “Gray Zone” of Turbulence: A Critical Review, J. Geophys. Res.-Atmos., 125, e2019JD030317, https://doi.org/10.1029/2019JD030317, 2020. a, b
Hoyer, S. and Hamman, J. J.: xarray: N-D labeled Arrays and Datasets in
Python, J. Open Res. Softw., 5, 10, https://doi.org/10.5334/jors.148, 2017. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jensen, N. O.: A note on wind turbine interaction, Tech. rep., Technical
report Ris-M-2411, Risø National Laboratory, Roskilde, Denmark,
https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf (last access: 15 May 2022), 1983. a
Jiménez, P. A., Navarro, J., Palomares, A. M., and Dudhia, J.: Mesoscale
modeling of offshore wind turbine wakes at the wind farm resolving scale: a
composite-based analysis with the Weather Research and Forecasting model over
Horns Rev, Wind Energy, 18, 559–566, https://doi.org/10.1002/we.1708, 2015. a, b
Lange, B., Larsen, S., Højstrup, J., and Barthelmie, R.: Importance of
thermal effects and sea surface roughness for offshore wind resource
assessment, J. Wind Eng. Indust. Aerodynam., 92, 959–988, https://doi.org/10.1016/j.jweia.2004.05.005, 2004. a
Larsén, X., Volker, P., Imberger, M., Fischereit, J., Langor, E., Hahmann, A., Ahsbahs, T., Duin, M., Ott, S., Sørensen, P., Koivisto, M.,
Maule, P., Hawkins, S., Kishore, A., Du, J., Kanellas, P., Badger, J., and
Davis, N.: Linking calculation of wakes from offshore wind farm cluster to
the Danish power integration system, DTU,
https://orbit.dtu.dk/files/211172072/WinEuropeOffshore2019_Poster_PO160_Larsen.pdf
(last access: 15 May 2022), 2019. a
Larsén, X. G. and Fischereit, J.: A case study of wind farm effects using two wake parameterizations in the Weather Research and Forecasting (WRF) model (V3.7.1) in the presence of low-level jets, Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, 2021. a
Lee, J. C. Y. and Lundquist, J. K.: Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data, Geosci. Model
Dev., 10, 4229–4244, https://doi.org/10.5194/gmd-10-4229-2017, 2017. a
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M.: Costs
and consequences of wind turbine wake effects arising from uncoordinated wind
energy development, Nat. Energy, 4, 26–34, https://doi.org/10.1038/s41560-018-0281-2, 2019. a, b
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der Walt,
S. and Millman, J., https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf (last access: 15 May 2022), 2010. a
Mehrens, A. R., Hahmann, A. N., Larsén, X. G., and von Bremen, L.:
Correlation and coherence of mesoscale wind speeds over the sea, Q. J. Roy.
Meteorol. Soc., 142, 3186–3194, https://doi.org/10.1002/qj.2900, 2016. a
Nygaard, N. G. and Hansen, S. D.: Wake effects between two neighbouring wind
farms, J. Phys.: Conf. Ser., 753, 032020, https://doi.org/10.1088/1742-6596/753/3/032020, 2016. a, b, c
Nygaard, N. G. and Newcombe, A. C.: Wake behind an offshore wind farm observed with dual-Doppler radars, J. Phys.: Conf. Ser., 1037, 072008, https://doi.org/10.1088/1742-6596/1037/7/072008, 2018. a
Nygaard, N. G., Steen, S. T., Poulsen, L., and Pedersen, J. G.: Modelling
cluster wakes and wind farm blockage, J. Phys.: Conf. Ser., 1618, 062072, https://doi.org/10.1088/1742-6596/1618/6/062072, 2020. a
Panofsky, H. A. and Dutton, J. A.: Atmospheric Turbulence, Wiley-interscience, ISBN 0471057142 9780471057147, 1984. a
Pedersen, M. M., van der Laan, P., Friis-Møller, M., Rinker, J., and
Réthoré, P.: DTUWindEnergy/PyWake: PyWake, Zenodo [code], https://doi.org/10.5281/zenodo.2562662, 2019. a, b, c, d
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and
Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59,
https://doi.org/10.1007/s10546-019-00473-0, 2020. a, b
Poulsen, L.: 1.7_Poulsen: Validation of wind farm parametrisation in WRF
using wind farm data, Tech. rep., DTU, https://doi.org/10.5281/ZENODO.3637944, 2019. a
Réthoré, P.-E., van der Laan, P., Troldborg, N., Zahle, F., and
Sørensen, N. N.: Verification and validation of an actuator disc model,
Wind Energy, 17, 919–937, https://doi.org/10.1002/we.1607, 2014. a
Schneemann, J., Theuer, F., Rott, A., Dörenkämper, M., and Kühn, M.: Offshore wind farm global blockage measured with scanning lidar, Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, 2021. a, b
Shapiro, C. R., Gayme, D. F., and Meneveau, C.: Modelling yawed wind turbine
wakes: a lifting line approach, J. Fluid Mech., 841, R1–11, https://doi.org/10.1017/jfm.2018.75, 2018. a
Siedersleben, S. K., Platis, A., Lundquist, J. K., Djath, B., Lampert, A.,
Bärfuss, K., Cañadillas, B., Schulz-Stellenfleth, J., Bange, J.,
Neumann, T., and Emeis, S.: Turbulent kinetic energy over large offshore
wind farms observed and simulated by the mesoscale model WRF (3.8.1), Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, 2020. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J.,
Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A
Description of the Advanced Research WRF Version 4, Tech. rep., NCAR Tech. Note NCAR/TN-556+STR, NCAR, https://doi.org/10.5065/1dfh-6p97, 2019. a
Sørensen, J. N., Nilsson, K., Ivanell, S., Asmuth, H., and Mikkelsen, R. F.: Analytical body forces in numerical actuator disc model of wind turbines, Renew. Energy, 147, 2259–2271, https://doi.org/10.1016/j.renene.2019.09.134, 2019. a
Sørensen, N. N., Bechmann, A., Johansen, J., Myllerup, L., Botha, P.,
Vinther, S., and Nielsen, B. S.: Identification of severe wind conditions
using a Reynolds Averaged Navier-Stokes solver, J. Phys.: Conf. Ser., 75, 012053, https://doi.org/10.1088/1742-6596/75/1/012053, 2007. a
Tennekes, H. and Lumley, J. L.: A first course in turbulence, MIT Press, Cambridge, ISBN 9780262200196, https://mitpress.mit.edu/books/first-course-turbulence (last access: 20 Mau 2022), 1972. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008. a
Tomaszewski, J. M. and Lundquist, J. K.: Simulated wind farm wake sensitivity
to configuration choices in the Weather Research and Forecasting model
version 3.8.1, Geosci. Model Dev., 13, 2645–2662, https://doi.org/10.5194/gmd-13-2645-2020, 2020. a
Troldborg, N. and Meyer Forsting, A. R.: A simple model of the wind turbine
induction zone derived from numerical simulations, Wind Energy, 20, 2011–2020, https://doi.org/10.1002/we.2137, 2017. a
van der Laan, M. P. and Andersen, S. J.: The turbulence scales of a wind
turbine wake: A revisit of extended k-epsilon models, J. Phys.: Conf. Ser., 1037, 072001, https://doi.org/10.1088/1742-6596/1037/7/072001, 2018. a
van der Laan, M. P., Sørensen, N. N., Réthoré, P.-E., Mann, J.,
Kelly, M. C., Troldborg, N., Hansen, K. S., and Murcia, J. P.: The
k-ε-fP model applied to wind farms, Wind Energy, 18, 2065–2084, https://doi.org/10.1002/we.1804, 2015a. a, b, c
van der Laan, M. P., Sørensen, N. N., Réthoré, P.-E., Mann, J.,
Kelly, M. C., Troldborg, N., Schepers, J. G., and Machefaux, E.: An improved
k-ϵ model applied to a wind turbine wake in atmospheric turbulence, Wind Energy, 18, 889–907, https://doi.org/10.1002/we.1736, 2015b. a, b
van der Laan, M. P., Peña, A., Volker, P., Hansen, K. S., Sørensen, N. N., Ott, S., and Hasager, C. B.: Challenges in simulating coastal effects
on an offshore wind farm, J. Phys.: Conf. Ser., 854, 012046, https://doi.org/10.1088/1742-6596/854/1/012046, 2017. a
van der Laan, M. P., Baungaard, M., and Kelly, M.: Inflow modeling for wind
farm flows in RANS, J. Phys.: Conf. Ser., 1934, 012012,
https://doi.org/10.1088/1742-6596/1934/1/012012, 2021a. a, b, c
van der Laan, M. P., Kelly, M., and Baungaard, M.: A pressure-driven
atmospheric boundary layer model satisfying Rossby and Reynolds number
similarity, Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, 2021b. a
van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A
Structure for Efficient Numerical Computation, Comput. Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O.,
Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki,
V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P.,
Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J.,
Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a
Vincent, C. L., Larsén, X. G., Larsen, S. E., and Sørensen, P.:
Cross-Spectra Over the Sea from Observations and Mesoscale Modelling,
Bound.-Lay. Meteorol., 146, 297–318, https://doi.org/10.1007/s10546-012-9754-1, 2013. a
WRF: WRF Version 4.2.2, GitHub [code], https://github.com/wrf-model/WRF/releases/tag/v4.2.2 (last access: 20 May 2022), 2021.
a
Wyngaard, J. C.: Toward Numerical Modeling in the “Terra Incognita”, J. Atmos. Sci., 61, 1816–1826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004. a
Zong, H. and Porté-Agel, F.: A momentum-conserving wake superposition
method for wind farm power prediction, J. Fluid Mech., 889, 1–5, https://doi.org/10.1017/jfm.2020.77, 2020. a, b
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8695 KB) - Full-text XML
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of...
Altmetrics
Final-revised paper
Preprint