Articles | Volume 8, issue 1
https://doi.org/10.5194/wes-8-1-2023
https://doi.org/10.5194/wes-8-1-2023
Research article
 | 
02 Jan 2023
Research article |  | 02 Jan 2023

Offshore wind energy forecasting sensitivity to sea surface temperature input in the Mid-Atlantic

Stephanie Redfern, Mike Optis, Geng Xia, and Caroline Draxl

Related authors

Detecting and characterizing simulated sea breezes over the US northeastern coast with implications for offshore wind energy
Geng Xia, Caroline Draxl, Michael Optis, and Stephanie Redfern
Wind Energ. Sci., 7, 815–829, https://doi.org/10.5194/wes-7-815-2022,https://doi.org/10.5194/wes-7-815-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Linking large-scale weather patterns to observed and modeled turbine hub-height winds offshore of the US West Coast
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025,https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Improving wind and power predictions via four-dimensional data assimilation in the WRF model: case study of storms in February 2022 at Belgian offshore wind farms
Tsvetelina Ivanova, Sara Porchetta, Sophia Buckingham, Gertjan Glabeke, Jeroen van Beeck, and Wim Munters
Wind Energ. Sci., 10, 245–268, https://doi.org/10.5194/wes-10-245-2025,https://doi.org/10.5194/wes-10-245-2025, 2025
Short summary
Investigating the Relationship between Simulation Parameters and Flow Variables in Simulating Atmospheric Gravity Waves for Wind Energy Applications
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-138,https://doi.org/10.5194/wes-2024-138, 2024
Revised manuscript accepted for WES
Short summary
Estimating the technical wind energy potential of Kansas that incorporates the effect of regional wind resource depletion by wind turbines
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024,https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Analyzing the performance of vertical wind profilers in rain events
Adriel J. Carvalho, Francisco Albuquerque Leite Neto, and Denisson Q. Oliveira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-132,https://doi.org/10.5194/wes-2024-132, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Aird, J. A., Barthelmie, R. J., Shepherd, T. J., and Pryor, S. C.: Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy, Energies, 15, 445, https://doi.org/10.3390/en15020445, 2022. a
Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J. M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature, Ocean Model., 9, 325–346, https://doi.org/10.1016/j.ocemod.2004.08.001, 2005. a
Banta, R. M., Pichugina, Y. L., Brewer, W. A., James, E. P., Olson, J. B., Benjamin, S. G., Carley, J. R., Bianco, L., Djalalova, I. V., Wilczak, J. M., Hardesty, R. M., Cline, J., and Marquis, M. C.: Evaluating and Improving NWP Forecast Models for the Future: How the Needs of Offshore Wind Energy Can Point the Way, B. Am. Meteorol. Soc., 99, 1155–1176, https://doi.org/10.1175/BAMS-D-16-0310.1, 2018. a
Bureau of Ocean Energy Management: Outer Continental Shelf Renewable Energy Leases Map Book, https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data (last access: 19 December 2022), 2018. a
Byun, D., Kim, S., Cheng, F.-Y., Kim, H.-C., and Ngan, F.: Improved Modeling Inputs: Land Use and Sea-Surface Temperature, Final Report, Texas Commission on Environmental Quality, https://www.tceq.texas.gov/airquality/airmod/project/pj_report_met.html (last access: 19 December 2022), 2007. a
Download
Short summary
As wind farm developments expand offshore, accurate forecasting of winds above coastal waters is rising in importance. Weather models rely on various inputs to generate their forecasts, one of which is sea surface temperature (SST). In this study, we evaluate how the SST data set used in the Weather Research and Forecasting model may influence wind characterization and find meaningful differences between model output when different SST products are used.
Share
Altmetrics
Final-revised paper
Preprint