Articles | Volume 9, issue 7
https://doi.org/10.5194/wes-9-1547-2024
https://doi.org/10.5194/wes-9-1547-2024
Research article
 | 
23 Jul 2024
Research article |  | 23 Jul 2024

On the power and control of a misaligned rotor – beyond the cosine law

Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso

Related authors

Vertical wake deflection for floating wind turbines by differential ballast control
Emmanouil M. Nanos, Carlo L. Bottasso, Simone Tamaro, Dimitris I. Manolas, and Vasilis A. Riziotis
Wind Energ. Sci., 7, 1641–1660, https://doi.org/10.5194/wes-7-1641-2022,https://doi.org/10.5194/wes-7-1641-2022, 2022
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind farm control
On the importance of wind predictions in wake steering optimization
Elie Kadoche, Pascal Bianchi, Florence Carton, Philippe Ciblat, and Damien Ernst
Wind Energ. Sci., 9, 1577–1594, https://doi.org/10.5194/wes-9-1577-2024,https://doi.org/10.5194/wes-9-1577-2024, 2024
Short summary
Evaluating the potential of wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-50,https://doi.org/10.5194/wes-2024-50, 2024
Revised manuscript under review for WES
Short summary
Dynamic wind farm flow control using free-vortex wake models
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024,https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
The value of wake steering wind farm flow control in US energy markets
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024,https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Towards real-time optimal control of wind farms using large-eddy simulations
Nick Janssens and Johan Meyers
Wind Energ. Sci., 9, 65–95, https://doi.org/10.5194/wes-9-65-2024,https://doi.org/10.5194/wes-9-65-2024, 2024
Short summary

Cited articles

Abramowitz, M., Stegun, I. A., and Romer, R. H.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Am. J. Phys., 56, 958–958, https://doi.org/10.1119/1.15378, 1988. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW reference wind turbine, Tech. Rep. I-0092 5, DTU Wind Energy, https://backend.orbit.dtu.dk/ws/portalfiles/portal/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf (last access: 12 July 2024), 2013. a, b
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018. a
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., NREL – National Renewable Energy Lab., https://doi.org/10.2172/1529216, 2019. a, b, c, d
Bottasso, C., Croce, A., Nam, Y., and Riboldi, C.: Power curve tracking in the presence of a tip speed constraint, Renew. Energy, 40, 1–12, https://doi.org/10.1016/j.renene.2011.07.045, 2012. a, b
Download
Short summary
We develop a new simple model to predict power losses incurred by a wind turbine when it yaws out of the wind. The model reveals the effects of a number of rotor design parameters and how the turbine is governed when it yaws. The model exhibits an excellent agreement with large eddy simulations and wind tunnel measurements. We showcase the capabilities of the model by deriving the power-optimal yaw strategy for a single turbine and for a cluster of wake-interacting turbines.
Altmetrics
Final-revised paper
Preprint