Articles | Volume 9, issue 9
https://doi.org/10.5194/wes-9-1827-2024
https://doi.org/10.5194/wes-9-1827-2024
Research article
 | 
16 Sep 2024
Research article |  | 16 Sep 2024

Investigating the interactions between wakes and floating wind turbines using FAST.Farm

Lucas Carmo, Jason Jonkman, and Regis Thedin

Related authors

Frequency-domain modeling of floating wind arrays with shared mooring lines
Matthew Hall, Lucas Carmo, and Ericka Lozon
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-58,https://doi.org/10.5194/wes-2025-58, 2025
Preprint under review for WES
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Analysis and calibration of optimal power balance rotor-effective wind speed estimation schemes for large-scale wind turbines
Atindriyo Kusumo Pamososuryo, Fabio Spagnolo, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 987–1006, https://doi.org/10.5194/wes-10-987-2025,https://doi.org/10.5194/wes-10-987-2025, 2025
Short summary
Coleman-free aero-elastic stability methods for three- and two-bladed floating wind turbines
Bogdan Pamfil, Henrik Bredmose, and Taeseong Kim
Wind Energ. Sci., 10, 827–856, https://doi.org/10.5194/wes-10-827-2025,https://doi.org/10.5194/wes-10-827-2025, 2025
Short summary
Multi-task Learning Long Short-term Memory Model to Emulate Wind Turbine Blade Dynamics
Shubham Baisthakur and Breiffni Fitzgerald
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-105,https://doi.org/10.5194/wes-2024-105, 2024
Revised manuscript accepted for WES
Short summary
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a
Angelou, N., Mann, J., and Dubreuil-Boisclair, C.: Revealing inflow and wake conditions of a 6 MW floating turbine, Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, 2023. a
Branlard, E., Martínez-Tossas, L., and Jonkman, J.: A time-varying formulation of the curled wake model within the FAST.Farm framework, Wind Energy, 26, 44–63, 2023. a, b, c, d
Churchfield, M. and Lee, S.: SOWFA: Simulator fOr Wind Farm Applications, https://www.nrel.gov/wind/nwtc/sowfa.html (last access: 5 September 2024), 2015. a
Doubrawa, P., Annoni, J., and Jonkman, J.: Optimization-based calibration of FAST.Farm parameters against large-eddy simulations, in: 2018 Wind Energy Symposium,Kissimmee, Florida, USA, 8–12 January 2018, p. 0512, https://doi.org/10.2514/6.2018-0512, 2018. a
Download
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Share
Altmetrics
Final-revised paper
Preprint