Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2039-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-2039-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data-driven surrogate model for wind turbine damage equivalent load
Department of Mechanical Engineering, Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia, Canada
Curran Crawford
Department of Mechanical Engineering, Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia, Canada
Related authors
Rad Haghi and Curran Crawford
Wind Energ. Sci., 7, 1289–1304, https://doi.org/10.5194/wes-7-1289-2022, https://doi.org/10.5194/wes-7-1289-2022, 2022
Short summary
Short summary
Based on the IEC standards, a limited number of simulations is sufficient to calculate the extreme and fatigue loads on a wind turbine. However, this means inaccuracy in the output statistics. This paper aims to build a surrogate model on blade element momentum aerodynamic model simulation output employing non-intrusive polynomial chaos expansion. The surrogate model is then used in a large number of Monte Carlo simulations to provide an accurate statistical estimate of the loads.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Patrick Connolly and Curran Crawford
Wind Energ. Sci., 8, 725–746, https://doi.org/10.5194/wes-8-725-2023, https://doi.org/10.5194/wes-8-725-2023, 2023
Short summary
Short summary
Mobile offshore wind energy systems are a potential way of producing green fuels from the untapped wind resource that lies far offshore. Herein, computational models of two such systems were developed and verified. The models are able to predict the power output of each system based on wind condition inputs. Results show that both systems have merits and that, contrary to existing results, unmoored floating wind turbines may produce as much power as fixed ones, given the right conditions.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Rad Haghi and Curran Crawford
Wind Energ. Sci., 7, 1289–1304, https://doi.org/10.5194/wes-7-1289-2022, https://doi.org/10.5194/wes-7-1289-2022, 2022
Short summary
Short summary
Based on the IEC standards, a limited number of simulations is sufficient to calculate the extreme and fatigue loads on a wind turbine. However, this means inaccuracy in the output statistics. This paper aims to build a surrogate model on blade element momentum aerodynamic model simulation output employing non-intrusive polynomial chaos expansion. The surrogate model is then used in a large number of Monte Carlo simulations to provide an accurate statistical estimate of the loads.
Kamran Shirzadeh, Horia Hangan, Curran Crawford, and Pooyan Hashemi Tari
Wind Energ. Sci., 6, 477–489, https://doi.org/10.5194/wes-6-477-2021, https://doi.org/10.5194/wes-6-477-2021, 2021
Short summary
Short summary
Wind energy systems work coherently in atmospheric flows which are gusty. This causes highly variable power productions and high fatigue loads on the system, which together hold back further growth of the wind energy market. This study demonstrates an alternative experimental procedure to investigate some extreme wind condition effects on wind turbines based on the IEC standard. This experiment can be improved upon and used to develop new control concepts, mitigating the effect of gusts.
Kamran Shirzadeh, Horia Hangan, and Curran Crawford
Wind Energ. Sci., 5, 1755–1770, https://doi.org/10.5194/wes-5-1755-2020, https://doi.org/10.5194/wes-5-1755-2020, 2020
Short summary
Short summary
The main goal of this study is to develop a physical simulation of some extreme wind conditions that are defined by the IEC standard. This has been performed by a hybrid numerical–experimental approach with a relevant scaling. Being able to simulate these dynamic flow fields can generate decisive results for future scholars working in the wind energy sector to make these wind energy systems more reliable and finally helps to accelerate the reduction of the cost of electricity.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf (last access: 25 October 2024), 2024. a
Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M.: A Review of Surrogate Models and Their Application to Groundwater Modeling, Water Resour. Res., 51, 5957–5973, https://doi.org/10.1002/2015WR016967, 2015. a
Avendaño-Valencia, L. D., Abdallah, I., and Chatzi, E.: Virtual Fatigue Diagnostics of Wake-Affected Wind Turbine via Gaussian Process Regression, Renew. Energy, 170, 539–561, https://doi.org/10.1016/j.renene.2021.02.003, 2021. a
Bárkányi, Á., Chován, T., Németh, S., and Abonyi, J.: Modelling for Digital Twins – Potential Role of Surrogate Models, Processes, 9, 476, https://doi.org/10.3390/pr9030476, 2021. a
Bastankhah, M. and Porté-Agel, F.: A New Analytical Model for Wind-Turbine Wakes, Renew. Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Blondel, F. and Cathelain, M.: An Alternative Form of the Super-Gaussian Wind Turbine Wake Model, Wind Energ. Sci., 5, 1225–1236, https://doi.org/10.5194/wes-5-1225-2020, 2020. a, b, c
Bossanyi, E. A.: GH Bladed Theory Manual, GH & Partners Ltd, 56–58, 2003. a
Branlard, E.: pyfast, GitHub [code], https://github.com/OpenFAST/python-toolbox (last access: 1 November 2023), 2023. a
Branlard, E., Jonkman, J., Dana, S., and Doubrawa, P.: A Digital Twin Based on OpenFAST Linearizations for Real-Time Load and Fatigue Estimation of Land-Based Turbines, J. Phys.: Conf. Ser., 1618, 022030, https://doi.org/10.1088/1742-6596/1618/2/022030, 2020. a
Branlard, E., Jonkman, J., Brown, C., and Zhang, J.: A digital twin solution for floating offshore wind turbines validated using a full-scale prototype, Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024, 2024. a
Crestaux, T., Le Maítre, O., and Martinez, J.-M.: Polynomial Chaos Expansion for Sensitivity Analysis, Reliabil. Eng. Syst. Safe., 94, 1161–1172, https://doi.org/10.1016/j.ress.2008.10.008, 2009. a
Dadras Eslamlou, A. and Huang, S.: Artificial-Neural-Network-Based Surrogate Models for Structural Health Monitoring of Civil Structures: A Literature Review, Buildings, 12, 2067, https://doi.org/10.3390/buildings12122067, 2022. a
De Kooning, J. D. M., Stockman, K., De Maeyer, J., Jarquin-Laguna, A., and Vandevelde, L.: Digital Twins for Wind Energy Conversion Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load, Processes, 9, 2224, https://doi.org/10.3390/pr9122224, 2021. a
de N Santos, F., D'Antuono, P., Robbelein, K., Noppe, N., Weijtjens, W., and Devriendt, C.: Long-Term Fatigue Estimation on Offshore Wind Turbines Interface Loads through Loss Function Physics-Guided Learning of Neural Networks, Renew. Energy, 205, 461–474, https://doi.org/10.1016/j.renene.2023.01.093, 2023. a, b
Dimitrov, N. and Göçmen, T.: Virtual Sensors for Wind Turbines with Machine Learning-Based Time Series Models, Wind Energy, 25, 1626–1645, https://doi.org/10.1002/we.2762, 2022. a, b
Dimitrov, N., Kelly, M. C., Vignaroli, A., and Berg, J.: From Wind to Loads: Wind Turbine Site-Specific Load Estimation with Surrogate Models Trained on High-Fidelity Load Databases, Wind Energ. Sci., 3, 767–790, https://doi.org/10.5194/wes-3-767-2018, 2018. a
Duthé, G., Santos, F. D. N., Abdallah, I., Réthore, P.-É., Weijtjens, W., Chatzi, E., and Devriendt, C.: Local Flow and Loads Estimation on Wake-Affected Wind Turbines Using Graph Neural Networks and PyWake, J. Phys.: Conf. Ser., 2505, 012014, https://doi.org/10.1088/1742-6596/2505/1/012014, 2023. a
Errandonea, I., Beltrán, S., and Arrizabalaga, S.: Digital Twin for Maintenance: A Literature Review, Comput. Indust., 123, 103316, https://doi.org/10.1016/j.compind.2020.103316, 2020. a
Fahim, M., Sharma, V., Cao, T.-V., Canberk, B., and Duong, T. Q.: Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines, IEEE Access, 10, 14184–14194, https://doi.org/10.1109/ACCESS.2022.3147602, 2022. a
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A.: Deep Learning for Time Series Classification: A Review, Data Min. Knowl. Discov., 33, 917–963, https://doi.org/10.1007/s10618-019-00619-1, 2019. a
Fluck, M.: Stochastic Methods for Unsteady Aerodynamic Analysis of Wings and Wind Turbine Blades, PhD thesis, ResearchGate, https://doi.org/10.13140/RG.2.2.25247.00169, 2017. a
Ge, R., Huang, F., Jin, C., and Yuan, Y.: Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition, arXiv [preprint], https://doi.org/10.48550/arXiv.1503.02101, 2015. a
Göçmen, T., van der Laan, P., Réthoré, P.-E., Diaz, A. P., Larsen, G. C., and Ott, S.: Wind Turbine Wake Models Developed at the Technical University of Denmark: A Review, Renew. Sustain. Energ. Rev., 60, 752–769, https://doi.org/10.1016/j.rser.2016.01.113, 2016. a
Haghi, R.: Data-driven surrogate model for wind turbine damage equivalent load, Zenodo [code and data set], https://doi.org/10.5281/zenodo.12583597, 2024. a
Haghi, R. and Crawford, C.: Surrogate Models for the Blade Element Momentum Aerodynamic Model Using Non-Intrusive Polynomial Chaos Expansions, Wind Energ. Sci., 7, 1289–1304, https://doi.org/10.5194/wes-7-1289-2022, 2022. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, arXiv [preprint],https://doi.org/10.48550/arXiv.1512.03385, 2015. a
Jonkman, B., Mudafort, R. M., Platt, A., Branlard, E., Sprague, M., Jonkman, J., HaymanConsulting, Hall, M., Vijayakumar, G., Buhl, M., Ross, H., Bortolotti, P., marco, Ananthan, S., Michael, S., Rood, J., rdamiani, nrmendoza, sinolonghai, pschuenemann, Slaughter, D., ashesh2512, kshaler, Housner, S., psakievich, Bendl, K., Carmo, L., Quon, E., mattrphillips, and Kusuno, N.: OpenFAST/openfast: OpenFAST v3.3.0, Zenodo [code], https://doi.org/10.5281/zenodo.7262094, 2022. a
Jonkman, B. J.: Turbsim User's Guide: Version 1.50, NREL, https://doi.org/10.2172/965520, 2009. a, b, c, d
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Tech. rep., NREL – National Renewable Energy Lab., Golden, CO, USA, https://doi.org/10.2172/947422, 2009. a, b
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 2017. a
Kucherenko, S., Albrecht, D., and Saltelli, A.: Exploring Multi-Dimensional Spaces: A Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques, arXiv [preprint], https://doi.org/10.48550/arXiv.1505.02350, 2015. a
Kudela, J. and Matousek, R.: Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A Review, Soft Comput., 26, 13709–13733, https://doi.org/10.1007/s00500-022-07362-8, 2022. a
Larsen, T. J. and Hansen, A. M.: How 2 HAWC2, the User's Manual, Risø National Laboratory, ISBN 978-87-550-3583-6, https://orbit.dtu.dk/files/7703110/ris_r_1597.pdf (last access: 29 October 2024), 2007. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep Learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S.: Multilayer Feedforward Networks with a Nonpolynomial Activation Function Can Approximate Any Function, Neural Networks, 6, 861–867, https://doi.org/10.1016/S0893-6080(05)80131-5, 1993. a
Liew, J. and Larsen, G. C.: How Does the Quantity, Resolution, and Scaling of Turbulence Boxes Affect Aeroelastic Simulation Convergence?, J. Phys.: Conf. Ser., 2265, 032049, https://doi.org/10.1088/1742-6596/2265/3/032049, 2022. a
Liu, Y., Zhang, J.-M., Min, Y.-T., Yu, Y., Lin, C., and Hu, Z.-Z.: A Digital Twin-Based Framework for Simulation and Monitoring Analysis of Floating Wind Turbine Structures, Ocean Eng., 283, 115009, https://doi.org/10.1016/j.oceaneng.2023.115009, 2023. a
Long, J., Shelhamer, E., and Darrell, T.: Fully Convolutional Networks for Semantic Segmentation, arXiv [preprint], https://doi.org/10.48550/arXiv.1411.4038, 2015. a, b
Marten, D.: QBlade: A Modern Tool for the Aeroelastic Simulation of Wind Turbines, Technische Universität Berlin, https://doi.org/10.14279/depositonce-10646, 2020. a
Mikołajczyk, A. and Grochowski, M.: Data Augmentation for Improving Deep Learning in Image Classification Problem, in: 2018 International Interdisciplinary PhD Workshop (IIPhDW), 9–12 May 2018, Swinemünde, Poland, 117–122, https://doi.org/10.1109/IIPHDW.2018.8388338, 2018. a
Movsessian, A., Schedat, M., and Faber, T.: Feature Selection Techniques for Modelling Tower Fatigue Loads of a Wind Turbine with Neural Networks, Wind Energ. Sci., 6, 539–554, https://doi.org/10.5194/wes-6-539-2021, 2021. a
Moynihan, B., Tronci, E. M., Hughes, M. C., Moaveni, B., and Hines, E.: Virtual Sensing via Gaussian Process for Bending Moment Response Prediction of an Offshore Wind Turbine Using SCADA Data, Renew. Energy, 227, 120466, https://doi.org/10.1016/j.renene.2024.120466, 2024. a
Mylonas, C., Abdallah, I., and Chatzi, E.: Conditional Variational Autoencoders for Probabilistic Wind Turbine Blade Fatigue Estimation Using Supervisory, Control, and Data Acquisition Data, Wind Energy, 24, 1122–1139, https://doi.org/10.1002/we.2621, 2021. a, b
Nielsen, M. S. and Rohde, V.: A Surrogate Model for Estimating Extreme Tower Loads on Wind Turbines Based on Random Forest Proximities, J. Appl. Stat., 49, 485–497, https://doi.org/10.1080/02664763.2020.1815675, 2022. a
Nispel, A., Ekwaro-Osire, S., Dias, J. P., and Cunha, A.: Probabilistic Design and Uncertainty Quantification of the Structure of a Monopile Offshore Wind Turbine, in: Volume 13: Safety Engineering, Risk, and Reliability Analysis, American Society of Mechanical Engineers, Salt Lake City, Utah, USA, p. V013T13A021, ISBN 978-0-7918-8350-1, https://doi.org/10.1115/IMECE2019-11862, 2019. a
O'Hagan, A.: Curve Fitting and Optimal Design for Prediction, J. Roy. Stat. Soc. Ser. B, 40, 1–24, https://doi.org/10.1111/j.2517-6161.1978.tb01643.x, 1978. a
Owen, A. B.: On Dropping the First Sobol' Point, arXiv [preprint], https://doi.org/10.48550/arXiv.2008.08051, 2021. a
Pedersen, M. M., van der Laan, P., Friis-Møller, M., Rinker, J., and Réthoré, P.-E.: PyWake 2.5.0: An open-source wind farm simulation tool, https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake (last access: 29 October 2024), 2023. a
Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations, J. Comput. Phys., 378, 686–707, https://doi.org/10.1016/j.jcp.2018.10.045, 2019. a
Ransley, E. J., Brown, S. A., Edwards, E. C., Tosdevin, T., Monk, K., Reynolds, A. M., Greaves, D., and Hann, M. R.: Real-Time Hybrid Testing of a Floating Offshore Wind Turbine Using a Surrogate-Based Aerodynamic Emulator, ASME Open J. Eng., 2, 021017, https://doi.org/10.1115/1.4056963, 2023. a
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, MIT Press, Cambridge, Mass., ISBN 978-0-262-18253-9, https://doi.org/10.7551/mitpress/3206.001.0001, 2006. a
Renardy, M., Joslyn, L. R., Millar, J. A., and Kirschner, D. E.: To Sobol or Not to Sobol? The Effects of Sampling Schemes in Systems Biology Applications, Math. Biosci., 337, 108593, https://doi.org/10.1016/j.mbs.2021.108593, 2021. a
Sanderse, B., van der Pijl, S., and Koren, B.: Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics, Wind Energy, 14, 799–819, https://doi.org/10.1002/we.458, 2011. a
Scarselli, F., Gori, M., Ah Chung Tsoi, Hagenbuchner, M., and Monfardini, G.: The Graph Neural Network Model, IEEE T. Neural Netw., 20, 61–80, https://doi.org/10.1109/TNN.2008.2005605, 2009. a
Schröder, L., Krasimirov Dimitrov, N., Verelst, D. R., and Sørensen, J. A.: Wind Turbine Site-Specific Load Estimation Using Artificial Neural Networks Calibrated by Means of High-Fidelity Load Simulations, J. Phys.: Conf. Ser., 1037, 062027, https://doi.org/10.1088/1742-6596/1037/6/062027, 2018. a, b, c
Schröder, L., Dimitrov, N. K., and Verelst, D. R.: A Surrogate Model Approach for Associating Wind Farm Load Variations with Turbine Failures, Wind Energ. Sci., 5, 1007–1022, https://doi.org/10.5194/wes-5-1007-2020, 2020. a, b, c, d
Schröder, L., Dimitrov, N. K., Verelst, D. R., and Sørensen, J. A.: Using Transfer Learning to Build Physics-Informed Machine Learning Models for Improved Wind Farm Monitoring, Energies, 15, 558, https://doi.org/10.3390/en15020558, 2022. a, b
Shaler, K., Jasa, J., and Barter, G. E.: Efficient Loads Surrogates for Waked Turbines in an Array, J. Phys.: Conf. Ser., 2265, 032095, https://doi.org/10.1088/1742-6596/2265/3/032095, 2022. a
Singh, D., Dwight, R. P., Laugesen, K., Beaudet, L., and Viré, A.: Probabilistic Surrogate Modeling of Offshore Wind-Turbine Loads with Chained Gaussian Processes, J. Phys.: Conf. Ser., 2265, 032070, https://doi.org/10.1088/1742-6596/2265/3/032070, 2022. a
Sobol', I. M.: On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 7, 784–802, 1967. a
Song, M., Moaveni, B., Ebrahimian, H., Hines, E., and Bajric, A.: Joint Parameter-Input Estimation for Digital Twinning of the Block Island Wind Turbine Using Output-Only Measurements, Mech. Syst. Sig. Process., 198, 110425, https://doi.org/10.1016/j.ymssp.2023.110425, 2023. a
Song, Z., Hackl, C. M., Anand, A., Thommessen, A., Petzschmann, J., Kamel, O., Braunbehrens, R., Kaifel, A., Roos, C., and Hauptmann, S.: Digital Twins for the Future Power System: An Overview and a Future Perspective, Sustainability, 15, 5259, https://doi.org/10.3390/su15065259, 2023. a
Stiesdal, H.: Rotor Loadings on the BONUS 450 kW Turbine, J. Wind Eng. Indust. Aerodynam. 39, 303–315, https://doi.org/10.1016/0167-6105(92)90555-O, 1992. a
Sudret, B.: Uncertainty Propagation and Sensitivity Analysis in Mechanical Models – Contributions to Structural Reliability and Stochastic Spectral Methods, PhD thesis, ETH Zurich, https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/risk-safety-and-uncertainty-dam/publications/reports/HDRSudret.pdf (last access: 29 October 2024), 2007. a
Sun, G. and Wang, S.: A Review of the Artificial Neural Network Surrogate Modeling in Aerodynamic Design, Proc. Inst. Mech. Eng. Pt. G, 233, 5863–5872, https://doi.org/10.1177/0954410019864485, 2019. a
van den Bos, L. M. M., Sanderse, B., Blonk, L., Bierbooms, W. A. A. M., and van Bussel, G. J. W.: Efficient Ultimate Load Estimation for Offshore Wind Turbines Using Interpolating Surrogate Models, J. Phys.: Conf. Ser., 1037, 062017, https://doi.org/10.1088/1742-6596/1037/6/062017, 2018. a
Wang, C., Qiang, X., Xu, M., and Wu, T.: Recent Advances in Surrogate Modeling Methods for Uncertainty Quantification and Propagation, Symmetry, 14, 1219, https://doi.org/10.3390/sym14061219, 2022. a
Westermann, P., Welzel, M., and Evins, R.: Using a Deep Temporal Convolutional Network as a Building Energy Surrogate Model That Spans Multiple Climate Zones, Appl. Energy, 278, 115563, https://doi.org/10.1016/j.apenergy.2020.115563, 2020. a
Williams, B. and Cremaschi, S.: Surrogate Model Selection for Design Space Approximation And Surrogatebased Optimization, in: Computer Aided Chemical Engineering, vol. 47, Elsevier, 353–358, ISBN 978-0-12-818597-1, https://doi.org/10.1016/B978-0-12-818597-1.50056-4, 2019. a
Wright, L. and Davidson, S.: How to Tell the Difference between a Model and a Digital Twin, Adv. Model. Simul. Eng. Sci., 7, 13, https://doi.org/10.1186/s40323-020-00147-4, 2020. a
Xiu, D. and Karniadakis, G. E.: The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput., 24, 619–644, https://doi.org/10.1137/S1064827501387826, 2002. a
Short summary
This journal paper focuses on developing surrogate models for predicting the damage equivalent load (DEL) on wind turbines without needing extensive aeroelastic simulations. The study emphasizes the development of a sequential machine learning architecture for this purpose. The study also explores implementing simplified wake models and transfer learning to enhance the models' prediction capabilities in various wind conditions.
This journal paper focuses on developing surrogate models for predicting the damage equivalent...
Altmetrics
Final-revised paper
Preprint