Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2039-2024
https://doi.org/10.5194/wes-9-2039-2024
Research article
 | 
04 Nov 2024
Research article |  | 04 Nov 2024

Data-driven surrogate model for wind turbine damage equivalent load

Rad Haghi and Curran Crawford

Related authors

Surrogate models for the blade element momentum aerodynamic model using non-intrusive polynomial chaos expansions
Rad Haghi and Curran Crawford
Wind Energ. Sci., 7, 1289–1304, https://doi.org/10.5194/wes-7-1289-2022,https://doi.org/10.5194/wes-7-1289-2022, 2022
Short summary

Cited articles

Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M.: A Review of Surrogate Models and Their Application to Groundwater Modeling, Water Resour. Res., 51, 5957–5973, https://doi.org/10.1002/2015WR016967, 2015. a
Avendaño-Valencia, L. D., Abdallah, I., and Chatzi, E.: Virtual Fatigue Diagnostics of Wake-Affected Wind Turbine via Gaussian Process Regression, Renew. Energy, 170, 539–561, https://doi.org/10.1016/j.renene.2021.02.003, 2021. a
Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, arXiv [preprint], https://doi.org/10.48550/arXiv.1803.01271, 2018. a, b, c, d, e
Bárkányi, Á., Chován, T., Németh, S., and Abonyi, J.: Modelling for Digital Twins – Potential Role of Surrogate Models, Processes, 9, 476, https://doi.org/10.3390/pr9030476, 2021. a
Download
Short summary
This journal paper focuses on developing surrogate models for predicting the damage equivalent load (DEL) on wind turbines without needing extensive aeroelastic simulations. The study emphasizes the development of a sequential machine learning architecture for this purpose. The study also explores implementing simplified wake models and transfer learning to enhance the models' prediction capabilities in various wind conditions.
Share
Altmetrics
Final-revised paper
Preprint