Articles | Volume 5, issue 3
https://doi.org/10.5194/wes-5-1121-2020
https://doi.org/10.5194/wes-5-1121-2020
Research article
 | 
24 Aug 2020
Research article |  | 24 Aug 2020

Simplified support structure design for multi-rotor wind turbine systems

Sven Störtenbecker, Peter Dalhoff, Mukunda Tamang, and Rudolf Anselm

Related authors

Validation of the dynamic wake meandering model with respect to loads and power production
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021,https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Dynamic wake meandering model calibration using nacelle-mounted lidar systems
Inga Reinwardt, Levin Schilling, Peter Dalhoff, Dirk Steudel, and Michael Breuer
Wind Energ. Sci., 5, 775–792, https://doi.org/10.5194/wes-5-775-2020,https://doi.org/10.5194/wes-5-775-2020, 2020
Short summary

Related subject area

Material science and structural mechanics
A symbolic framework to obtain mid-fidelity models of flexible multibody systems with application to horizontal-axis wind turbines
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022,https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022,https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Seismic soil–structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method
Masaru Kitahara and Takeshi Ishihara
Wind Energ. Sci., 7, 1007–1020, https://doi.org/10.5194/wes-7-1007-2022,https://doi.org/10.5194/wes-7-1007-2022, 2022
Short summary
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022,https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Pablo Noever-Castelos, Bernd Haller, and Claudio Balzani
Wind Energ. Sci., 7, 105–127, https://doi.org/10.5194/wes-7-105-2022,https://doi.org/10.5194/wes-7-105-2022, 2022
Short summary

Cited articles

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW reference wind turbine, DTU Wind Energy Report-I-0092, Technical University of Denmark, p. 5, 2013. a, b, c
Fraunhofer ISE: Stromgestehungskosten: Erneuerbare Energien, available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf (last access: 20 August 2020), 2018. a
IEC 61400-1: IEC 61400-1, edn. 4, Wind energy generation systems – Part 1: Design requirements, Guideline, International Electrotechnical Commission (IEC), 2019. a, b, c, d, e
Jamieson, P.: Innovation in Wind Turbine Design, John Wiley & Sons, New York, 2018. a, b, c, d
Jamieson, P., Branney, M., Hart, K., Chaviaropoulos, P., Sieros, G., Voutsinas, S., Chasapogiannis, P., and Prospathopoulos, J. M.: Innovative Turbine Concepts – Multi-Rotor System, INNWIND Deliverable 1.33, INNWIND, 2017. a, b, c, d, e
Download
Short summary
Multi-rotor wind turbine systems show the potential to reduce the levelized cost of energy. In this study a simplified and fast method as a first venture to find an optimal number of rotors and design parameters is presented. A variety of space frame designs are dimensioned based on ultimate loads and buckling, as a preliminary step for later detailed analyses.
Altmetrics
Final-revised paper
Preprint