Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2231-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-2231-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Research challenges and needs for the deployment of wind energy in hilly and mountainous regions
Andrew Clifton
CORRESPONDING AUTHOR
Stuttgart Wind Energy, University of Stuttgart, Stuttgart, Germany
now at: TGU enviConnect, TTI GmbH, Stuttgart, Germany
Sarah Barber
Institute for Energy Technology, Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640 Rapperswil, Switzerland
Alexander Stökl
Energiewerkstatt e.V., Heiligenstatt 24, 5211 Friedburg, Austria
Helmut Frank
FE13, Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany
Timo Karlsson
VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, P.O. Box 1000, 02044 VTT, Espoo, Finland
Related authors
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Sarah Barber, Anna Maria Sempreviva, Jeffrey Clerc, and Anne Hegemann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-159, https://doi.org/10.5194/wes-2025-159, 2025
Preprint under review for WES
Short summary
Short summary
This paper explores how organisational culture shapes digitalisation in the wind energy sector. Based on a global survey and literature review, it finds that teams drive digital adoption more effectively than entire organisations, with companies ahead of universities. Size has little impact, but barriers such as limited budgets, vague strategies, and risk-averse leadership slow progress. The study offers practical recommendations to foster collaboration, innovation, and clear digital strategies.
Philip Imanuel Franz, Imad Abdallah, Gregory Duthé, Julien Deparday, Ali Jafarabadi, Alexander Popp, Sarah Barber, and Eleni Chatzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-26, https://doi.org/10.5194/wes-2025-26, 2025
Revised manuscript accepted for WES
Short summary
Short summary
New designs of large wind turbine blades have become increasingly flexible, and thus need cost-efficient monitoring solutions. Hence, we investigate if aerodynamic pressure measurements from a low-cost sensing system can be used to detect structural damage. Our research is based on a wind tunnel study, emulating a simplified wind turbine blade under various conditions. We show that using a convolutional neural network-based method, structural damage can indeed be detected and its severity rated.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114, https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary
Short summary
We further enhanced a knowledge base for choosing the most optimal wind resource assessment tool. For this, we compared different simulation tools for the Perdigão site in Portugal, in terms of accuracy and costs. In total five different simulation tools were compared. We found that with a high degree of automatisation and a high experience level of the modeller a cost effective and accurate prediction based on RANS could be achieved. LES simulations are still mainly reserved for academia.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640, https://doi.org/10.5194/wes-7-1627-2022, https://doi.org/10.5194/wes-7-1627-2022, 2022
Short summary
Short summary
As part of a master's thesis, this study analysed the aerodynamic performance of a multi-element airfoil using numerical flow simulations. The results show that these types of airfoil are very suitable for an upcoming wind energy generation concept. The parametric study of the wing led to a significant improvement of up to 46.6 % compared to the baseline design. The increased power output of the energy generation concept contributes substantially to today's energy transition.
Sarah Barber, Alain Schubiger, Sara Koller, Dominik Eggli, Alexander Radi, Andreas Rumpf, and Hermann Knaus
Wind Energ. Sci., 7, 1503–1525, https://doi.org/10.5194/wes-7-1503-2022, https://doi.org/10.5194/wes-7-1503-2022, 2022
Short summary
Short summary
In this work, a range of simulations are carried out with seven different wind modelling tools at five different complex terrain sites and the results compared to wind speed measurements at validation locations. This is then extended to annual energy production (AEP) estimations (without wake effects), showing that wind profile prediction accuracy does not translate directly or linearly to AEP accuracy. It is therefore vital to consider overall AEP when evaluating simulation accuracies.
Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller
Wind Energ. Sci., 7, 1383–1398, https://doi.org/10.5194/wes-7-1383-2022, https://doi.org/10.5194/wes-7-1383-2022, 2022
Short summary
Short summary
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for the further reduction in the costs of wind energy. In this work, a novel cost-effective MEMS (micro-electromechanical systems)-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy to install, low power and self-sustaining is designed and tested.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Jia Yi Jin, Timo Karlsson, and Muhammad S. Virk
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-55, https://doi.org/10.5194/wes-2021-55, 2021
Preprint withdrawn
Short summary
Short summary
In this manuscript, a numerical case study has been presented regarding ice detection and wind resource assessment in ice prone cold regions. Three years SCADA data from a wind park in Arctic region is used for this study. T19IceLossMethod based statistical analysis and Computational Fluid Dynamics (CFD) based numerical simulations are carried out for icing events classification and wind resource assessment, as well as estimation of resultant Annual Energy Production (AEP).
Alain Schubiger, Sarah Barber, and Henrik Nordborg
Wind Energ. Sci., 5, 1507–1519, https://doi.org/10.5194/wes-5-1507-2020, https://doi.org/10.5194/wes-5-1507-2020, 2020
Short summary
Short summary
A large-eddy simulation using the lattice Boltzmann method (LBM) Palabos framework was implemented to calculate the wind field over the complex terrain of Bolund Hill. The results were compared to Reynolds-averaged Navier–Stokes and detached-eddy simulation (DES) using Ansys Fluent and field measurements. A comparison of the three methods' computational costs has shown that the LBM, even though not yet fully optimised, can perform 5 times faster than DES and lead to reasonably accurate results.
Cited articles
Antoniou, I., Pedersen, S. M., and Enevoldsen, P. B.: Wind shear and
uncertainties in power curve measurement and wind resources, Wind Eng., 33, 449–468, 2009. a
Arbez, C., Clément, M., Godreau, C., Swytink-Binnema, N., Tete, K., and
Wadham-Gagnon, M.: Development and Validation of an Ice Prediction Model for
Wind Farms, Tech. rep., TechnoCenter éolien,
https://nergica.com/en/development-and-validation-of-an-ice-prediction-model-for-wind (last access: 1 October 2022), 2016. a
Barber, S. and Nordborg, H.: Improving site-dependent power curve prediction
accuracy using regression trees, J. Phys.: Conf. Ser., 1618, 062003, https://doi.org/10.1088/1742-6596/1618/6/062003, 2020. a, b
Barber, S., Buehler, M., and Nordborg, H.: IEA Wind Task 31: Design of a new
comparison metrics simulation challenge for wind resource assessment in
complex terrain Stage 1, J. Phys.: Conf. Ser., 1618, 062013, https://doi.org/10.1088/1742-6596/1618/6/062013, 2020a. a
Barber, S., Schubiger, A., Koller, S., Rumpf, A., Knaus, H., and Nordborg, H.: Actual Total Cost reduction of commercial CFD modelling tools for Wind
Resource Assessment in complex terrain, J. Phys.: Conf. Ser., 1618, 062012, https://doi.org/10.1088/1742-6596/1618/6/062012, 2020b.
a
Barber, S., Schubiger, A., Koller, S., Rumpf, A., and Knaus, H.: The Pragmatic Choice of Wind Model in Complex Terrain – Decision Tool Development, Zenodo [code], https://doi.org/10.5281/zenodo.4876982, 2021. a
Barber, S., Hammer, F., and Tica, A.: Tools for predicting site-specific performance, ASME J. Risk Uncertain., 8, 021102, https://doi.org/10.1115/1.4053513, 2022. a
Bell, T. M., Klein, P., Wildmann, N., and Menke, R.: Analysis of flow in
complex terrain using multi-Doppler lidar retrievals, Atmos. Meas. Tech., 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020, 2020. a
Berg, J., Mann, J., Bechmann, A., Courtney, M. S., and Jørgensen, H. E.: The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill,
Bound.-Lay. Meteorol., 141, 219, https://doi.org/10.1007/s10546-011-9636-y, 2011. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009. a
Black, A., Mazoyer, P., Wylie, S., Debnath, M., Lammers, A., Spalding, T., and Schultz, R.: Survey of Correction Techniques for Remote Sensing Devices in Complex Flow, Zenodo [data set], https://doi.org/10.5281/zenodo.4302363, 2020. a
Bodini, N., Zardi, D., and Lundquist, J. K.: Three-dimensional structure of
wind turbine wakes as measured by scanning lidar, Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017, 2017. a
Borraccino, A., Schlipf, D., Haizmann, F., and Wagner, R.: Wind field
reconstruction from nacelle-mounted lidar short-range measurements, Wind
Energ. Sci., 2, 269–283, https://doi.org/10.5194/wes-2-269-2017, 2017. a
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. Rep. NREL/TP-5000-73492, National Renewable Energy Laboratory, Golden, CO, https://doi.org/10.2172/1529216, 2019. a
Bowen, A. J. and Mortensen, N. G.: Exploring the limits of WAsP: the Wind Atlas Analysis and Application Program, in: Proceedings of the 1996 European Union Wind Energy Conference, 20–24 May 1996, Göteborg, Sweden, 584–587, Paper O15.2, https://backend.orbit.dtu.dk/ws/portalfiles/portal/116681565/Exploring_the_limits.pdf (last access: 1 October 2022), 1996. a
Bradley, S., Strehz, A., and Emeis, S.: Remote sensing winds in complex terrain – a review, Meteorol. Z., 24, 547–555, https://doi.org/10.1127/metz/2015/0640, 2015. a
Bredesen, R. E., Cattin, R., Clausen, N.-E., Davis, N., Jordaens, P. J.,
Khadiri-Yazami, Z., Klintström, R., Krenn, A., Lehtomäki, V.,
Ronsten, G., Wadham-Gagnon, M., and Wickman, H.: IEA Wind TCP Recommended
Practice 13 2nd Edition: Wind Energy in Cold Climates, Tech. rep., IEA Wind
Task 19, https://iea-wind.org/task19/t19-publications/ (last access: 1 October 2022), 2017. a
Clifton, A., Kilcher, L., Lundquist, J. K., and Fleming, P.: Using machine
learning to predict wind turbine power output, Environ. Res. Lett., 8, 024009, https://doi.org/10.1088/1748-9326/8/2/024009, 2013. a, b
Clifton, A., Daniels, M. H., and Lehning, M.: Effect of winds in a mountain
pass on turbine performance, Wind Energy, 17, 1543–1562, https://doi.org/10.1002/we.1650, 2014. a, b
Clifton, A., Boquet, M., Burin Des Roziers, E., Westerhellweg, A., Hofsass, M., Klaas, T., Vogstad, K., Clive, P., Harris, M., Wylie, S., Osler, E., Banta, B., Choukulkar, A., Lundquist, J., and Aitken, M.: Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations, Tech. Rep. NREL/TP-5000-64634, National Renewable Energy Laboratory, Golden, CO, USA, https://doi.org/10.2172/1351595, 2015. a
Clifton, A., Smith, A., and Fields, M.: Wind Plant Preconstruction Energy
Estimates. Current Practice and Opportunities, Tech. Rep. NREL/TP-5000-64735,
National Renewable Energy Laboratory, Golden, CO, USA, https://doi.org/10.2172/1248798, 2016. a
Clifton, A., Hodge, B.-M., Draxl, C., Badger, J., and Habte, A.: Wind and solar resource data sets, WIREs Energ. Environ., 7, e276,
https://doi.org/10.1002/wene.276, 2018. a, b, c
Draxl, C., Clifton, A., Hodge, B.-M., and McCaa, J.: The Wind Integration
National Dataset (WIND) Toolkit, Appl. Energy, 151, 355–366, 2015. a
ECMWF: C3S Copernicus Climate Change Service,
https://cds.climate.copernicus.eu/about-c3s (last access: 31 May 2022), 2020. a
Elliott, D., Holladay, C., Barchet, W., Foote, H., and Sandusky, W.: Wind Energy Resource Atlas of the United States, Technical Report DOE/CH 10093-4, Pacific Northwest National Laboratory, https://www.nrc.gov/docs/ML0609/ML060940383.pdf (last access: 1 October 2022), 1986. a
Emeis, S.: Wind speed and shear associated with low-level jets over Northern
Germany, Meteorol. Z., 23, 295–304, https://doi.org/10.1127/0941-2948/2014/0551, 2014. a
European Commission: In-Depth Analysis In Support Of The Commission Communication COM(2018) 773 A Clean Planet for all: A European long-term
strategic vision for a prosperous, modern, competitive and climate neutral
economy, Tech. rep., European Commission,
https://ec.europa.eu/clima/system/files/2018-11/com_2018_733_analysis_in_support_en.pdf
(last access: 1 October 2022), 2018. a
Feng, Y., Miranda-Fuentes, J., Guo, S., Jacob, J., and Sagaut, P.: ProLB: A
Lattice Boltzmann Solver of Large-Eddy Simulation for Atmospheric Boundary
Layer Flows, J. Adv. Model.Earth Syst., 13, e2020MS002107, https://doi.org/10.1029/2020MS002107, 2021. a
Foresti, L., Tuia, D., and Kanevski, M.: Learning wind fields with multiple
kernels, Stoch. Environ. Res. Risk A., 25, 51–66, https://doi.org/10.1007/s00477-010-0405-0, 2011. a
Frediani, M. E. B., Hopson, T. M., Hacker, J. P., Anagnostou, E. N., Monache,
L. D., and Vandenberghe, F.: Object-Based Analog Forecasts for Surface Wind
Speed, Mon. Weather Rev., 145, 5083–5102, https://doi.org/10.1175/MWR-D-17-0012.1, 2017. a
Friis Pedersen, T.: Development of a Classification System for Cup
Anemometers-CLASSCUP, Tech. Rep. 1348(EN), Risø National Laboratory,
Roskilde, ISBN 87-550-3076-9, https://backend.orbit.dtu.dk/ws/portalfiles/portal/7711662/ris_r_1348.pdf (last access: 1 October 2022), 2003. a
Godreau, C. and Tete, K.: Ice protection systems and retrofits: Performance
and experiences, Winterwind 2020,
https://windren.se/WW2020/13_4_39_Godreau_Ice_protection_systems_and_retrofits_Performance_and_experiences_Pub.pdf
(last access: 1 October 2022), 2020. a
Hansen, C. and Hansen, K.: Recent Advances in Wind Turbine Noise Research,
Acoustics, 2, 171–206, https://doi.org/10.3390/acoustics2010013, 2020. a
Hedevang, E.: Wind turbine power curves incorporating turbulence intensity,
Wind Energy, 17, 173–195, 2014. a
Hofsäß, M., Clifton, A., and Cheng, P. W.: Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model Approach, Remote Sens., 10, 1465, https://doi.org/10.3390/rs10091465, 2018. a
Hofsäß, M., Bergmann, D., Denzel, J., and Cheng, P. W.: Flying UltraSonic – A new way to measure the wind, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2019-81, 2019. a
Holleran, S., Roscheck, F., Fields, J., Kersting, G., Bohara, A., Purdue, M.,
and Lee, J.: IEA-Task-43/digital_wra_data_standard: 0.1.1-2021.04,
Zenodo [code], https://doi.org/10.5281/zenodo.4710169, 2021. a
Hübner, G., Pohl, J., Hoen, B., Firestone, J., Rand, J., Elliott, D., and
Haac, R.: Monitoring annoyance and stress effects of wind turbines on nearby
residents: A comparison of U.S. and European samples, Environ. Int., 132, 105090, https://doi.org/10.1016/j.envint.2019.105090, 2019. a
IEC 61400-13:2015: Wind energy generation systems – Part 13: Measurement of mechanical loads, https://webstore.iec.ch/publication/72669 (last access: 1 October 2022), 2015. a
IEC 61400-24:2019: Wind energy generation systems – Part 24: Lightning Protection, https://webstore.iec.ch/publication/32050 (last access: 1 October 2022), 2019b. a
IEC 61400-50-3:2019: Wind energy generation systems – Part 50-3: Use of nacelle mounted lidars for wind measurements, https://webstore.iec.ch/publication/59587 (last access: 1 October 2022), 2019c. a
Karagulle, D., Frye, C., Sayre, R., Breyer, S., Aniello, P., Vaughan, R., and
Wright, D.: Modeling global Hammond landform regions from 250-m elevation
data, T. GIS, 21, 1040–1060, https://doi.org/10.1111/tgis.12265, 2017. a, b
Karlsson, T.: Cold climate wind market study 2020–2025, Winterwind 2021,
https://windren.se/WW2021/14_2_21_Karlsson_IEA_Wind_Task_19_Cold_climate_wind_market_study_Public.pdf
(last access: 1 October 2022), 2021. a
Kelberlau, F. and Mann, J.: Cross-contamination effect on turbulence spectra
from Doppler beam swinging wind lidar, Wind Energ. Sci., 5, 519–541,
https://doi.org/10.5194/wes-5-519-2020, 2020. a
Kilpatrick, R. J., Hildebrandt, S., Swytink-Binnema, N., and Clément, M.:
Advances in wind power forecasting and power loss mitigation for cold climate operation, J. Phys.: Conf. Ser., 1452, 012079, https://doi.org/10.1088/1742-6596/1452/1/012079, 2020. a
Klaas-Witt, T. and Emeis, S.: The five main influencing factors for lidar errors in complex terrain, Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022, 2022. a, b
Komusanac, I., Brindley, G., Fraile, D., and Ramirez, L.: Wind energy in
Europe: 2021 Statistics and the outlook for 2022–2026, Tech. rep.,
WindEurope,
https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2021-statistics-and-the-outlook-for, last access: 1 October 2022. a
Krenn, A., Stökl, A., Weber, N., Barup, S., Weidl, T., Hoffmann, A.,
Bredesen, R. E., Lannic, M., Müller, S., Stoffels, N., Hahm, T., Storck, F., and Lautenschlager, F.: International Recommendations for Ice Fall and Ice Throw Risk Assessments, https://iea-wind.org/task19/t19-publications/ (last access: 1 October 2022), 2018. a
Lange, J., Mann, J., Berg, J., Parvu, D., Kilpatrick, R., Costache, A.,
Jubayer, C., Siddiqui, K., and Hangan, H.: For wind turbines in complex
terrain, the devil is in the detail, Environ. Res. Lett., 12, 094020, https://doi.org/10.1088/1748-9326/aa81db, 2017. a
Lee, J., Zhao, F., Dutton, A., Backwell, B., Fiestas, R., Qiao, L.,
Balachandran, N., Lim, S., Liang, W., Clarke, E., Lathigara, A., and Younger,
D. R.: Global Wind Report 2021, Tech. rep., Global Wind Energy Council, https://gwec.net/global-wind-report-2021/ (last access: 1 October 2022), 2021. a
Lee, J. C. Y., Stuart, P., Clifton, A., Fields, M. J., Perr-Sauer, J.,
Williams, L., Cameron, L., Geer, T., and Housley, P.: The Power Curve Working
Group's assessment of wind turbine power performance prediction methods, Wind
Energ. Sci., 5, 199–223, https://doi.org/10.5194/wes-5-199-2020, 2020. a
Letson, F., Shepherd, T. J., Barthelmie, R. J., and Pryor, S. C.: Modelling
Hail and Convective storms with WRF for Wind Energy Applications, J. Phys.: Conf. Ser., 1452, 012051, https://doi.org/10.1088/1742-6596/1452/1/012051, 2020. a
Macdonald, H., Infield, D., Nash, D. H., and Stack, M. M.: Mapping hail
meteorological observations for prediction of erosion in wind turbines, Wind
Energy, 19, 777–784, https://doi.org/10.1002/we.1854, 2016. a
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C.,
Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn,
P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A.,
Rodrigo, J. S., Söderberg, S., Vasiljevic, N., and Rodrigues, C. V.:
Complex terrain experiments in the New European Wind Atlas, Philos. T. Roy. Soc. Lond. A, 375, 20160101, https://doi.org/10.1098/rsta.2016.0101, 2017. a
Menke, R., Vasiljević, N., Hansen, K. S., Hahmann, A. N., and Mann, J.: Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain, Wind Energy Science, 3, 681–691, https://doi.org/10.5194/wes-3-681-2018, 2018. a, b
Menke, R., Vasiljević, N., Wagner, J., Oncley, S. P., and Mann, J.:
Multi-lidar wind resource mapping in complex terrain, Wind Energ. Sci., 5,
1059–1073, https://doi.org/10.5194/wes-5-1059-2020, 2020. a
Mickle, R. E., Cook, N. J., Hoff, A. M., Jensen, N., Salmon, J. R., Taylor,
P. A., Tetzlaff, G., and Teunissen, H.: The Askervein Hill Project: Vertical
profiles of wind and turbulence, Bound.-Lay. Meteorol., 43, 143–169, 1988. a
Möhrlen, C., Zack, J., and Giebel, G.: IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions, Elsevier Academic Press, 270 pp., ISBN 9780443186813,
https://www.elsevier.com/books/iea-wind-recommended-practice-for-the-implementation-of, last access: 1 October 2022. a
Molinder, J., Scher, S., Nilsson, E., Körnich, H., Bergström, H.,
and Sjöblom, A.: Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests, Energies, 14, 158, https://doi.org/10.3390/EN14010158, 2020. a
Molter, C. and Cheng, P. W.: ANDroMeDA – A Novel Flying Wind Measurement
System, J. Phys.: Conf. Ser., 1618, 032049, https://doi.org/10.1088/1742-6596/1618/3/032049, 2020. a
Mortensen, N., Nielsen, M., and Ejsing Jørgensen, H.: Comparison of
Resource and Energy Yield Assessment Procedures 2011–2015: What have we
learned and what needs to be done?, in: Proceedings of the EWEA Annual Event
and Exhibition 2015, EWEA – European Wind Energy Association, https://backend.orbit.dtu.dk/ws/portalfiles/portal/118434032/Comparison_of_Resource_and_Energy_Yield_paper.pdf (last access: 1 October 2022), 2015. a
Newman, J. F. and Clifton, A.: An error reduction algorithm to improve lidar
turbulence estimates for wind energy, Wind Energ. Sci., 2, 77–95,
https://doi.org/10.5194/wes-2-77-2017, 2017. a
Olson, J. B., Kenyon, J. S., Djalalova, I., Bianco, L., Turner, D. D.,
Pichugina, Y., Choukulkar, A., Toy, M. D., Brown, J. M., Angevine, W. M.,
Akish, E., Bao, J.-W., Jimenez, P., Kosovic, B., Lundquist, K. A., Draxl, C.,
Lundquist, J. K., McCaa, J., McCaffrey, K., Lantz, K., Long, C., Wilczak, J.,
Banta, R., Marquis, M., Redfern, S., Berg, L. K., Shaw, W., and Cline, J.:
The Second Wind Forecast Improvement Project (WFIP2): General Overview, B. Am. Meteorol. Soc., 100, 2201–2220, https://doi.org/10.1175/BAMS-D-18-0040.1, 2019. a
Onodera, N., Idomura, Y., and Hasegawa, Y.: Real-Time Tracer Dispersion
Simulations in Oklahoma City Using the Locally Mesh-Refined Lattice Boltzmann
Method, Bound.-Lay. Meteorol., 179, 187–208, https://doi.org/10.1007/s10546-020-00594-x, 2021. a
Papadopoulos, K. H., Stefantos, N. C., Paulsen, U. S., and Morfiadakis, E.:
Effects of Turbulence and Flow Inclination on the Performance of Cup
Anemometers in the Field, Bound.-Lay. Meteorol., 101, 77–107,
https://doi.org/10.1023/A:1019254020039, 2001. a
Pohl, J., Gabriel, J., and Hübner, G.: Understanding stress effects of wind turbine noise – The integrated approach, Energy Policy, 112, 119–128,
https://doi.org/10.1016/j.enpol.2017.10.007, 2018. a
Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., and Sakaguchi, K.: Climate change impacts on wind power generation, Nat. Rev. Earth Environ., 1, 627–643, https://doi.org/10.1038/s43017-020-0101-7, 2020. a, b
Rasp, S. and Lerch, S.: Neural Networks for Postprocessing Ensemble Weather
Forecasts, Mon. Weather Rev., 146, 3885–3900, https://doi.org/10.1175/MWR-D-18-0187.1, 2018. a
Rautenberg, A., Schön, M., zum Berge, K., Mauz, M., Manz, P., Platis, A.,
van Kesteren, B., Suomi, I., Kral, S. T., and Bange, J.: The Multi-Purpose
Airborne Sensor Carrier MASC-3 for Wind and Turbulence Measurements in the
Atmospheric Boundary Layer, Sensors, 19, 2292, https://doi.org/10.3390/s19102292, 2019. a
Reinert, D., Prill, F., Frank, H., Denhard, M., Baldauf, M., Schraff, C.,
Gebhardt, C., Marsigli, C., and Zängl, G.: DWD Database Reference for the
Global and Regional ICON and ICON-EPS Forecasting System, Tech. rep.,
Deutscher Wetterdienst, Offenbach am Main, Germany,
https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/icon/icon_dbbeschr_aktuell.pdf (last access: 1 October 2022), 2021. a
RISE: Wind power in cold climates,
https://www.ri.se/en/press/wind-power-in-cold-climates (last access: 19 April 2022), 2020. a
Roberge, P., Lemay, J., Ruel, J., and Bégin-Drolet, A.: Field analysis,
modeling and characterization of wind turbine hot air ice protection systems, Cold Reg. Sci. Technol., 163, 19–26, https://doi.org/10.1016/j.coldregions.2019.04.001, 2019. a
Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., and Balsamo, G.: Why is
it so difficult to represent stably stratified conditions in numerical
weather prediction (NWP) models?, J. Adv. Model. Earth Syst., 5, 117–133, https://doi.org/10.1002/jame.20013, 2013. a, b
Sanz Rodrigo, J., Chávez Arroyo, R. A., Moriarty, P., Churchfield, M.,
Kosović, B., Réthoré, P.-E., Hansen, K. S., Hahmann, A., Mirocha, J. D., and Rife, D.: Mesoscale to microscale wind farm flow modeling and evaluation, WIREs Energ. Environ., 6, e214, https://doi.org/10.1002/wene.214, 2017. a
Sathe, A., Mann, J., Gottschall, J., and Courtney, M. S.: Can Wind Lidars
Measure Turbulence?, J. Atmos. Ocean. Tech., 28, 853–868, https://doi.org/10.1175/JTECH-D-10-05004.1, 2011. a, b
Sayre, R., Frye, C., Karagulle, D., Krauer, J., Breyer, S., Aniello, P.,
Wright, D. J., Payne, D., Adler, C., Warner, H., VanSistine, D. P., and
Cress, J.: A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions, Mount. Res. Dev., 38, 240–249, https://doi.org/10.1659/MRD-JOURNAL-D-17-00107.1, 2018. a, b, c
Schubiger, A., Barber, S., and Nordborg, H.: Evaluation of the lattice
Boltzmann method for wind modelling in complex terrain, Wind Energ. Sci., 5, 1507–1519, https://doi.org/10.5194/wes-5-1507-2020, 2020. a
Shaw, W. J., Berg, L. K., Cline, J., Draxl, C., Djalalova, I., Grimit, E. P.,
Lundquist, J. K., Marquis, M., McCaa, J., Olson, J. B., Sivaraman, C., Sharp,
J., and Wilczak, J. M.: The Second Wind Forecast Improvement Project (WFIP2):
General Overview, B. Am. Meteorol. Soc., 100, 1687–1699, https://doi.org/10.1175/BAMS-D-18-0036.1, 2019. a
Son, C. and Kim, T.: Development of an icing simulation code for rotating wind turbines, J. Wind Eng. Indust. Aerodynam., 203, 104239, https://doi.org/10.1016/j.jweia.2020.104239, 2020. a
Stawiarski, C., Träumner, K., Knigge, C., and Calhoun, R.: Scopes and
Challenges of Dual-Doppler Lidar Wind Measurements – An Error Analysis, J. Atmos. Ocean. Tech., 30, 2044–2062, https://doi.org/10.1175/JTECH-D-12-00244.1, 2013. a
Straka, T. M., Fritze, M., and Voigt, C. C.: The human dimensions of a
green–green-dilemma: Lessons learned from the wind energy – wildlife conflict in Germany, Energ. Rep., 6, 1768–1777, https://doi.org/10.1016/j.egyr.2020.06.028, 2020. a
Strauss, L., Serafin, S., and Dorninger, M.: Skill and Potential Economic
Value of Forecasts of Ice Accretion on Wind Turbines, J. Appl. Meteorol. Clim., 59, 1845–1864, https://doi.org/10.1175/JAMC-D-20-0025.1, 2020. a
Swytink-Binnema, N., Godreau, C., and Arbez, C.: Detecting instrumental icing
using automated double anemometry, Wind Energy, 22, 80–88, https://doi.org/10.1002/we.2271, 2019. a
Tabas, D., Fang, J., and Porté-Agel, F.: Wind Energy Prediction in Highly
Complex Terrain by Computational Fluid Dynamics, Energies, 12, 1311, https://doi.org/10.3390/en12071311, 2019. a
Thompson, G.: High Resolution Numerical Weather Model Forecasts of Icing at the Ground and in the Air, in: Proc. of the Int. Workshop on Atmospheric Icing of Structures, IWAIS 2019, https://iwais2019.is/images/Papers/042_iwais_thompson.pdf (last access: 1 October 2022), 2019. a
Tong, D., Farnham, D. J., Duan, L., Zhang, Q., Lewis, N. S., Caldeira, K., and Davis, S. J.: Geophysical constraints on the reliability of solar and wind power worldwide, Nat. Commun., 12, 6146, https://doi.org/10.1038/s41467-021-26355-z, 2021. a
USGS: Geosciences and Environmental Change Science Center, https://rmgsc.cr.usgs.gov/gme/gme. shtml, last access: 1 October 2022. a
Vanderwende, B. J. and Lundquist, J. K.: The modification of wind turbine
performance by statistically distinct atmospheric regimes, Environ. Res. Lett., 7, 034035, https://doi.org/10.1088/1748-9326/7/3/034035, 2012. a
Vanderwende, B. J., Lundquist, J. K., Rhodes, M. E., Takle, E. S., and Irvin,
S. L.: Observing and Simulating the Summertime Low-Level Jet in Central Iowa,
Mon. Weather Rev., 143, 2319–2336, https://doi.org/10.1175/MWR-D-14-00325.1, 2015. a
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D.,
Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J.,
Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E.,
Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research
challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, 2016. a, b
Vasiljević, N., L. M. Palma, J. M., Angelou, N., Carlos Matos, J., Menke, R., Lea, G., Mann, J., Courtney, M., Frölen Ribeiro, L., and M. G. C. Gomes, V. M.: Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments, Atmos. Meas. Tech., 10, 3463–3483,
https://doi.org/10.5194/amt-10-3463-2017, 2017. a
Vasiljevic, N., Klaas, T., Pauscher, L., Lopes, J. C., Gomes, D. F., Abreuand, R., and Bardal, L. M.: e-WindLidar: making wind lidar data FAIR,
Zenodo [data set], https://doi.org/10.5281/zenodo.2478051, 2018.
a
Vasiljević, N., Harris, M., Tegtmeier Pedersen, A., Rolighed Thorsen, G.,
Pitter, M., Harris, J., Bajpai, K., and Courtney, M.: Wind sensing with
drone-mounted wind lidars: proof of concept, Atmos. Meas. Tech., 13, 521–536, https://doi.org/10.5194/amt-13-521-2020, 2020a. a
Vasiljević, N., Vignaroli, A., Bechmann, A., and Wagner, R.: Digitalization of scanning lidar measurement campaign planning, Wind Energ. Sci., 5, 73–87, https://doi.org/10.5194/wes-5-73-2020, 2020b. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O.,
Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki,
V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P.,
Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J.,
Robertson, A., Rodrigo, J. S., Sempreviva, A. M., Smith, J. C., Tuohy, A.,
and Wiser, R.: Grand challenges in the science of wind energy, Science, 366,
6464, https://doi.org/10.1126/science.aau2027, 2019. a, b
Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., and Butler, B. W.: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja, Atmos. Chem. Phys., 16, 5229–5241, https://doi.org/10.5194/acp-16-5229-2016, 2016. a
Wagner, D., Steinfeld, G., Witha, B., Wurps, H., and Reuder, J.: Low Level Jets over the Southern North Sea, Meteorol. Z., 28, 389–415,
https://doi.org/10.1127/metz/2019/0948, 2019. a
Wagner, R., Courtney, M., Gottschall, J., and Lindelow-Marsden, P.: Accounting for the speed shear in wind turbine power performance measurement, Wind Energy, 14, 993–1004, https://doi.org/10.1002/we.509, 2011. a
Wharton, S. and Lundquist, J. K.: Atmospheric stability affects wind turbine
power collection, Environ. Res. Lett., 7, 014005, https://doi.org/10.1088/1748-9326/7/1/014005, 2012. a
Wilczak, J., Finley, C., Freedman, J., Cline, J., Bianco, L., Olson, J.,
Djalalova, I., Sheridan, L., Ahlstrom, M., Manobianco, J., Zack, J., Carley,
J. R., Benjamin, S., Coulter, R., Berg, L. K., Mirocha, J., Clawson, K.,
Natenberg, E., and Marquis, M.: The Wind Forecast Improvement Project (WFIP):
A Public-Private Partnership Addressing Wind Energy Forecast Needs, B. Am. Meteorol. Soc., 96, 1699–1718, https://doi.org/10.1175/BAMS-D-14-00107.1, 2015. a
Würth, I., Valldecabres, L., Simon, E., Möhrlen, C., Uzunoğlu, B., Gilbert, C., Giebel, G., Schlipf, D., and Kaifel, A.: Minute-Scale
Forecasting of Wind Power – Results from the Collaborative Workshop of IEA
Wind Task 32 and 36, Energies, 12, 712, https://doi.org/10.3390/en12040712, 2019. a
Zängl, G.: Extending the Numerical Stability Limit of Terrain-Following
Coordinate Models over Steep Slopes, Mon. Weather Rev., 140, 3722–3733,
https://doi.org/10.1175/MWR-D-12-00049.1, 2012. a
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called
complexand are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
The transition to low-carbon sources of energy means that wind turbines will need to be built in...
Altmetrics
Final-revised paper
Preprint