Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2231-2022
https://doi.org/10.5194/wes-7-2231-2022
Review article
 | 
08 Nov 2022
Review article |  | 08 Nov 2022

Research challenges and needs for the deployment of wind energy in hilly and mountainous regions

Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson

Related authors

Grand challenges in the digitalisation of wind energy
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023,https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Grand Challenges: wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022,https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021,https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
The Power Curve Working Group's assessment of wind turbine power performance prediction methods
Joseph C. Y. Lee, Peter Stuart, Andrew Clifton, M. Jason Fields, Jordan Perr-Sauer, Lindy Williams, Lee Cameron, Taylor Geer, and Paul Housley
Wind Energ. Sci., 5, 199–223, https://doi.org/10.5194/wes-5-199-2020,https://doi.org/10.5194/wes-5-199-2020, 2020
Short summary
Atmospheric turbulence affects wind turbine nacelle transfer functions
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 2, 295–306, https://doi.org/10.5194/wes-2-295-2017,https://doi.org/10.5194/wes-2-295-2017, 2017
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Quantifying tropical-cyclone-generated waves in extreme-value-derived design for offshore wind
Sarah McElman, Amrit Shankar Verma, and Andrew Goupee
Wind Energ. Sci., 10, 1529–1550, https://doi.org/10.5194/wes-10-1529-2025,https://doi.org/10.5194/wes-10-1529-2025, 2025
Short summary
Estimating long-term annual energy production from shorter-time-series data: methods and verification with a 10-year large-eddy simulation of a large offshore wind farm
Bernard Postema, Remco A. Verzijlbergh, Pim van Dorp, Peter Baas, and Harm J. J. Jonker
Wind Energ. Sci., 10, 1471–1484, https://doi.org/10.5194/wes-10-1471-2025,https://doi.org/10.5194/wes-10-1471-2025, 2025
Short summary
Evaluating the potential of short-term instrument deployment to improve distributed wind resource assessment
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci., 10, 1451–1470, https://doi.org/10.5194/wes-10-1451-2025,https://doi.org/10.5194/wes-10-1451-2025, 2025
Short summary
Brief communication: A note on the variance of wind speed and turbulence intensity
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025,https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary

Cited articles

Antoniou, I., Pedersen, S. M., and Enevoldsen, P. B.: Wind shear and uncertainties in power curve measurement and wind resources, Wind Eng., 33, 449–468, 2009. a
Arbez, C., Clément, M., Godreau, C., Swytink-Binnema, N., Tete, K., and Wadham-Gagnon, M.: Development and Validation of an Ice Prediction Model for Wind Farms, Tech. rep., TechnoCenter éolien, https://nergica.com/en/development-and-validation-of-an-ice-prediction-model-for-wind (last access: 1 October 2022), 2016. a
Barber, S. and Nordborg, H.: Improving site-dependent power curve prediction accuracy using regression trees, J. Phys.: Conf. Ser., 1618, 062003, https://doi.org/10.1088/1742-6596/1618/6/062003, 2020. a, b
Barber, S., Buehler, M., and Nordborg, H.: IEA Wind Task 31: Design of a new comparison metrics simulation challenge for wind resource assessment in complex terrain Stage 1, J. Phys.: Conf. Ser., 1618, 062013, https://doi.org/10.1088/1742-6596/1618/6/062013, 2020a. a
Barber, S., Schubiger, A., Koller, S., Rumpf, A., Knaus, H., and Nordborg, H.: Actual Total Cost reduction of commercial CFD modelling tools for Wind Resource Assessment in complex terrain, J. Phys.: Conf. Ser., 1618, 062012, https://doi.org/10.1088/1742-6596/1618/6/062012, 2020b.  a
Download
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called complex and are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
Share
Altmetrics
Final-revised paper
Preprint