Articles | Volume 7, issue 2
https://doi.org/10.5194/wes-7-523-2022
https://doi.org/10.5194/wes-7-523-2022
Research article
 | 
11 Mar 2022
Research article |  | 11 Mar 2022

Load reduction for wind turbines: an output-constrained, subspace predictive repetitive control approach

Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden

Related authors

Analysis and multi-objective optimisation of wind turbine torque control strategies
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023,https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary

Related subject area

Control and system identification
A reference open-source controller for fixed and floating offshore wind turbines
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022,https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Model-based design of a wave-feedforward control strategy in floating wind turbines
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021,https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Active flap control with the trailing edge flap hinge moment as a sensor: using it to estimate local blade inflow conditions and to reduce extreme blade loads and deflections
Sebastian Perez-Becker, David Marten, and Christian Oliver Paschereit
Wind Energ. Sci., 6, 791–814, https://doi.org/10.5194/wes-6-791-2021,https://doi.org/10.5194/wes-6-791-2021, 2021
Short summary

Cited articles

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, Report, DTU Wind Energy, https://backend.orbit.dtu.dk/ws/portalfiles/portal/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf (last access: 3 March, 2022), 2013. a, b, c
Barthelmie, R. J., Frandsen, S. T., Nielsen, M. N., Pryor, S. C., Rethore, P.-E., and Jørgensen, H. E.: Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm, Wind Energy, 10, 517–528, https://doi.org/10.1002/we.238, 2007. a
Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N.: The explicit linear quadratic regulator for constrained systems, Automatica, 38, 3–20, 2002. a
Bir, G.: Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, 7–10 January 2008, Reno, Nevada, 2008. a, b
Bossanyi, E. A.: Individual Blade Pitch Control for Load Reduction, Wind Energy, 6, 119–128, 2003. a, b
Download
Short summary
The objective of the paper is to develop a data-driven output-constrained individual pitch control approach, which will not only mitigate the blade loads but also reduce the pitch activities. This is achieved by only reducing the blade loads violating a user-defined bound, which leads to an economically viable load control strategy. The proposed control strategy shows promising results of load reduction in the wake-rotor overlapping and turbulent sheared wind conditions.
Altmetrics
Final-revised paper
Preprint