Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1575-2023
https://doi.org/10.5194/wes-8-1575-2023
Research article
 | 
24 Oct 2023
Research article |  | 24 Oct 2023

Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads

Will Wiley, Jason Jonkman, Amy Robertson, and Kelsey Shaler

Related authors

Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads in extreme idling conditions
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-130,https://doi.org/10.5194/wes-2024-130, 2024
Preprint under review for WES
Short summary
OC6 project Phase IV: validation of numerical models for novel floating offshore wind support structures
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Seán B. Leen, and Oisín Conway
Wind Energ. Sci., 9, 1025–1051, https://doi.org/10.5194/wes-9-1025-2024,https://doi.org/10.5194/wes-9-1025-2024, 2024
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Offshore technology
Dynamic performance of a passively self-adjusting floating wind farm layout to increase the annual energy production
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024,https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
OC6 project Phase IV: validation of numerical models for novel floating offshore wind support structures
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Seán B. Leen, and Oisín Conway
Wind Energ. Sci., 9, 1025–1051, https://doi.org/10.5194/wes-9-1025-2024,https://doi.org/10.5194/wes-9-1025-2024, 2024
Short summary
Quantifying the impact of modeling fidelity on different substructure concepts for floating offshore wind turbines – Part 1: Validation of the hydrodynamic module QBlade-Ocean
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Félicien Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024,https://doi.org/10.5194/wes-9-623-2024, 2024
Short summary
A new methodology for upscaling semi-submersible platforms for floating offshore wind turbines
Kaylie L. Roach, Matthew A. Lackner, and James F. Manwell
Wind Energ. Sci., 8, 1873–1891, https://doi.org/10.5194/wes-8-1873-2023,https://doi.org/10.5194/wes-8-1873-2023, 2023
Short summary
Design optimization of offshore wind jacket piles by assessing support structure orientation relative to metocean conditions
Maciej M. Mroczek, Sanjay Raja Arwade, and Matthew A. Lackner
Wind Energ. Sci., 8, 807–817, https://doi.org/10.5194/wes-8-807-2023,https://doi.org/10.5194/wes-8-807-2023, 2023
Short summary

Cited articles

ABS – American Bureau of Shipping: Selecting design wave by long term stochastic method, https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/offshore/238_Guidance_Notes_on_Selecting_Design_Wave_by_Long_Term_Stochastic_Method/Long_Term_Design_Wave_GN_e.pdf (last access: 19 October 2023), 2016. a, b
Bachynski, E., Kvittem, M., Luan, C., and Moan, T.: Wind-wave misalignment effects on floating wind turbines: motions and tower load effects, J. Offshore Mech. Arct. Eng., 136, OMAE-13-1119, https://doi.org/10.1115/1.4028028, 2014. a
Debnath, M., Doubrawa, P., Optis, M., Hawbecker, P., and Bodini, N.: Extreme wind shear events in US offshore wind energy areas and the role of induced stratification, Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, 2021. a, b
Duarte, T., Gueydon, S., Jonkman, J., and Sarmento, A.: Computation of wave loads under multidirectional sea states for floating offshore wind turbines, https://www.nrel.gov/docs/fy14osti/61161.pdf (last access: 30 April 2023), 2014. a, b
Gómez, P., Sánchez, G., Llana, A., and Gonzalez, G.: Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m, Tech. rep., Iberdrola Ingeniería y Construcción, https://lifes50plus.eu/wp-content/uploads/2015/12/GA_640741_LIFES50-_D1.1.pdf (last access: 30 April 2023), 2015. a
Download
Short summary
A sensitivity analysis determined the modeling parameters for an operating floating offshore wind turbine with the biggest impact on the ultimate and fatigue loads. The loads were the most sensitive to the standard deviation of the wind speed. Ultimate and fatigue mooring loads were highly sensitive to the current speed; only the fatigue mooring loads were sensitive to wave parameters. The largest platform rotation was the most sensitive to the platform horizontal center of gravity.
Altmetrics
Final-revised paper
Preprint