Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1613-2023
https://doi.org/10.5194/wes-8-1613-2023
Research article
 | 
27 Oct 2023
Research article |  | 27 Oct 2023

Extreme wind turbine response extrapolation with the Gaussian mixture model

Xiaodong Zhang and Nikolay Dimitrov

Related authors

Gaussian mixture model for extreme wind turbulence estimation
Xiaodong Zhang and Anand Natarajan
Wind Energ. Sci., 7, 2135–2148, https://doi.org/10.5194/wes-7-2135-2022,https://doi.org/10.5194/wes-7-2135-2022, 2022
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
A parcel-level evaluation of distributed wind opportunity in the contiguous United States
Jane Lockshin, Paula Pérez, Slater Podgorny, Michaela Sizemore, Paritosh Das, Jeffrey D. Laurence-Chasen, Paul Crook, and Caleb Phillips
Wind Energ. Sci., 10, 1231–1248, https://doi.org/10.5194/wes-10-1231-2025,https://doi.org/10.5194/wes-10-1231-2025, 2025
Short summary
Probabilistic cost modeling as a basis for optimizing inspection and maintenance of turbine support structures in offshore wind farms
Muhammad Farhan, Ronald Schneider, Sebastian Thöns, and Max Gündel
Wind Energ. Sci., 10, 461–481, https://doi.org/10.5194/wes-10-461-2025,https://doi.org/10.5194/wes-10-461-2025, 2025
Short summary
Wind Turbine Gearbox Operation Monitoring Using High-Resolution Distributed Fiber Optic Sensing
Linqing Luo, Unai Gutierrez Santiago, and Yuxin Wu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-1,https://doi.org/10.5194/wes-2025-1, 2025
Revised manuscript accepted for WES
Short summary
Semi-analytical methodology for fretting wear evaluation of unlubricated pitch bearing raceways under operative and non-operative periods
David Cubillas, Mireia Olave, Iñigo Llavori, Ibai Ulacia, Jon Larrañaga, Aitor Zurutuza, and Arkaitz Lopez
Wind Energ. Sci., 10, 401–415, https://doi.org/10.5194/wes-10-401-2025,https://doi.org/10.5194/wes-10-401-2025, 2025
Short summary
Effect of blade inclination angle for straight-bladed vertical-axis wind turbines
Laurence Morgan, Abbas Kazemi Amiri, William Leithead, and James Carroll
Wind Energ. Sci., 10, 381–399, https://doi.org/10.5194/wes-10-381-2025,https://doi.org/10.5194/wes-10-381-2025, 2025
Short summary

Cited articles

Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Selected papers of hirotugu akaike, Springer, New York, NY, 199–213, https://doi.org/10.1007/978-1-4612-1694-0_15, 1998. a
Arthur, D. and Vassilvitskii, S.: K-means++: The advantages of careful seeding, in: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 1027–1035, ISBN 978-0-89871-624-5, 2007. a
Barone, M. F., Paquette, J. A., Resor, B. R., and Manuel, L.: Decades of wind turbine load simulation, in: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, No. SAND2011-3780C, https://doi.org/10.2514/6.2012-1288, 2011. a, b, c
Cui, M., Feng, C., Wang, Z., and Zhang, J.: Statistical representation of wind power ramps using a generalized Gaussian mixture model, IEEE T. Sustain. Energ., 9, 261–272, https://doi.org/10.1109/TSTE.2017.2727321, 2018. a
Dai, B., Xia, Y., and Li, Q.: An extreme value prediction method based on clustering algorithm, Reliab. Eng. Syst. Safe, 222, 108442, https://doi.org/10.1016/j.ress.2022.108442, 2022. a
Download
Short summary
Wind turbine extreme response estimation based on statistical extrapolation necessitates using a small number of simulations to calculate a low exceedance probability. This is a challenging task especially if we require small prediction error. We propose the use of a Gaussian mixture model as it is capable of estimating a low exceedance probability with minor bias error, even with limited simulation data, having flexibility in modeling the distributions of varying response variables.
Share
Altmetrics
Final-revised paper
Preprint