Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1613-2023
https://doi.org/10.5194/wes-8-1613-2023
Research article
 | 
27 Oct 2023
Research article |  | 27 Oct 2023

Extreme wind turbine response extrapolation with the Gaussian mixture model

Xiaodong Zhang and Nikolay Dimitrov

Related authors

Gaussian mixture model for extreme wind turbulence estimation
Xiaodong Zhang and Anand Natarajan
Wind Energ. Sci., 7, 2135–2148, https://doi.org/10.5194/wes-7-2135-2022,https://doi.org/10.5194/wes-7-2135-2022, 2022
Short summary

Cited articles

Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Selected papers of hirotugu akaike, Springer, New York, NY, 199–213, https://doi.org/10.1007/978-1-4612-1694-0_15, 1998. a
Arthur, D. and Vassilvitskii, S.: K-means++: The advantages of careful seeding, in: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 1027–1035, ISBN 978-0-89871-624-5, 2007. a
Barone, M. F., Paquette, J. A., Resor, B. R., and Manuel, L.: Decades of wind turbine load simulation, in: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, No. SAND2011-3780C, https://doi.org/10.2514/6.2012-1288, 2011. a, b, c
Cui, M., Feng, C., Wang, Z., and Zhang, J.: Statistical representation of wind power ramps using a generalized Gaussian mixture model, IEEE T. Sustain. Energ., 9, 261–272, https://doi.org/10.1109/TSTE.2017.2727321, 2018. a
Dai, B., Xia, Y., and Li, Q.: An extreme value prediction method based on clustering algorithm, Reliab. Eng. Syst. Safe, 222, 108442, https://doi.org/10.1016/j.ress.2022.108442, 2022. a
Download
Short summary
Wind turbine extreme response estimation based on statistical extrapolation necessitates using a small number of simulations to calculate a low exceedance probability. This is a challenging task especially if we require small prediction error. We propose the use of a Gaussian mixture model as it is capable of estimating a low exceedance probability with minor bias error, even with limited simulation data, having flexibility in modeling the distributions of varying response variables.
Share
Altmetrics
Final-revised paper
Preprint