Articles | Volume 8, issue 12
https://doi.org/10.5194/wes-8-1795-2023
https://doi.org/10.5194/wes-8-1795-2023
Research article
 | 
04 Dec 2023
Research article |  | 04 Dec 2023

A method to correct for the effect of blockage and wakes on power performance measurements

Alessandro Sebastiani, James Bleeg, and Alfredo Peña

Related authors

Dependence of turbulence estimations on nacelle lidar scanning strategies
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023,https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024,https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024,https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Improvements to the dynamic wake meandering model by incorporating the turbulent Schmidt number
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024,https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary
An actuator sector model for wind power applications: a parametric study
Mohammad Mehdi Mohammadi, Hugo Olivares-Espinosa, Gonzalo Pablo Navarro Diaz, and Stefan Ivanell
Wind Energ. Sci., 9, 1305–1321, https://doi.org/10.5194/wes-9-1305-2024,https://doi.org/10.5194/wes-9-1305-2024, 2024
Short summary

Cited articles

Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, https://doi.org/10.1017/jfm.2017.11, 2017. a
Asimakopoulos, M., Clive, P., More, G., and Boddington, R.: Offshore compression zone measurement and visualisation, Tech. rep., SgurrEnergy, 2014. a
Bleeg, J.: A Graph Neural Network Surrogate Model for the Prediction of Turbine Interaction Loss, J. Phys. Conf. Ser., 1618, 062054, https://doi.org/10.1088/1742-6596/1618/6/062054, 2020. a
Bleeg, J. and Montavon, C.: Blockage effects in a single row of wind turbines, J. Phys. Conf. Ser., 2265, 022001, https://doi.org/10.1088/1742-6596/2265/2/022001, 2022. a
Bleeg, J., Digraskar, D., Horn, U., and Corbett, J.: Modelling stability at microscale, both within and above the atmospheric boundary layer, substantially improves wind speed predictions, in: Proceedings of the EWEA Conference, Paris, France, 2015a. a
Download
Short summary
The power curve of a wind turbine indicates the turbine power output in relation to the wind speed. Therefore, power curves are critically important to estimate the production of future wind farms as well as to assess whether operating wind farms are functioning correctly. Since power curves are often measured in wind farms, they might be affected by the interactions between the turbines. We show that these effects are not negligible and present a method to correct for them.
Altmetrics
Final-revised paper
Preprint