Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-819-2023
https://doi.org/10.5194/wes-8-819-2023
Research article
 | 
26 May 2023
Research article |  | 26 May 2023

A new RANS-based wind farm parameterization and inflow model for wind farm cluster modeling

Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré

Related authors

Simulating wind farm flows at hub height with 2D Reynolds-averaged Navier-Stokes simulations
Mads Baungaard, Takafumi Nishino, and Maarten Paul van der Laan
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-50,https://doi.org/10.5194/wes-2025-50, 2025
Manuscript not accepted for further review
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
From shear to veer: theory, statistics, and practical application
Mark Kelly and Maarten Paul van der Laan
Wind Energ. Sci., 8, 975–998, https://doi.org/10.5194/wes-8-975-2023,https://doi.org/10.5194/wes-8-975-2023, 2023
Short summary
Brief communication: A clarification of wake recovery mechanisms
Maarten Paul van der Laan, Mads Baungaard, and Mark Kelly
Wind Energ. Sci., 8, 247–254, https://doi.org/10.5194/wes-8-247-2023,https://doi.org/10.5194/wes-8-247-2023, 2023
Short summary
Wind turbine wake simulation with explicit algebraic Reynolds stress modeling
Mads Baungaard, Stefan Wallin, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 1975–2002, https://doi.org/10.5194/wes-7-1975-2022,https://doi.org/10.5194/wes-7-1975-2022, 2022
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, J. Renew. Sustain. Energ., 7, 013121, https://doi.org/10.1063/1.4907600, 2015. a, b, c, d, e, f
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018. a
Antonini, E. G., Romero, D. A., and Amon, C. H.: Improving CFD wind farm simulations incorporating wind direction uncertainty, Renew. Energy, 133, 1011–1023, https://doi.org/10.1016/j.renene.2018.10.084, 2019. a
Apsley, D. D. and Castro, I. P.: A limited-length-scale kε model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997. a, b, c, d, e, f, g, h
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind Turbine, Tech. Rep. I-0092, Technical University of Denmark, https://orbit.dtu.dk/files/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf (last access: 23 May 2023), 2013. a, b
Download
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Share
Altmetrics
Final-revised paper
Preprint