Articles | Volume 9, issue 5
https://doi.org/10.5194/wes-9-1153-2024
https://doi.org/10.5194/wes-9-1153-2024
Research article
 | 
13 May 2024
Research article |  | 13 May 2024

Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parametrization in the Weather Research and Forecasting model

Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst

Related authors

Dynamic Modelling and Response of a Power Cable connected to a Floating Wind Turbine
David Robert Verelst, Rasmus Sode Lund, and Jean-Philippe Roques
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-24,https://doi.org/10.5194/wes-2024-24, 2024
Preprint under review for WES
Short summary
Modelling wind farm effects in HARMONIE–AROME (cycle 43.2.2) – Part 1: Implementation and evaluation
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024,https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Extreme coherent gusts with direction change – probabilistic model, yaw control, and wind turbine loads
Ásta Hannesdóttir, David R. Verelst, and Albert M. Urbán
Wind Energ. Sci., 8, 231–245, https://doi.org/10.5194/wes-8-231-2023,https://doi.org/10.5194/wes-8-231-2023, 2023
Short summary
The Impact of Climate Change on Extreme Winds over Northern Europe According to CMIP6
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102,https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Adjusted spectral correction method for calculating extreme winds in tropical-cyclone-affected water areas
Xiaoli Guo Larsén and Søren Ott
Wind Energ. Sci., 7, 2457–2468, https://doi.org/10.5194/wes-7-2457-2022,https://doi.org/10.5194/wes-7-2457-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
The multi-scale coupled model: a new framework capturing wind farm–atmosphere interaction and global blockage effects
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 1123–1152, https://doi.org/10.5194/wes-9-1123-2024,https://doi.org/10.5194/wes-9-1123-2024, 2024
Short summary
Seasonal variability of wake impacts on US mid-Atlantic offshore wind plant power production
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci., 9, 555–583, https://doi.org/10.5194/wes-9-555-2024,https://doi.org/10.5194/wes-9-555-2024, 2024
Short summary
Simulating low-frequency wind fluctuations
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-142,https://doi.org/10.5194/wes-2023-142, 2023
Revised manuscript accepted for WES
Short summary
Bayesian method for estimating Weibull parameters for wind resource assessment in a tropical region: a comparison between two-parameter and three-parameter Weibull distributions
Mohammad Golam Mostafa Khan and Mohammed Rafiuddin Ahmed
Wind Energ. Sci., 8, 1277–1298, https://doi.org/10.5194/wes-8-1277-2023,https://doi.org/10.5194/wes-8-1277-2023, 2023
Short summary
Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023,https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary

Cited articles

Badger, M., Karagali, I., and Cavar, D.: Offshore wind fields in near-real-time, Technical University of Denmark [data set], https://science.globalwindatlas.info/#/map/satwinds (last access: 8 May 2024), 2022. a, b, c
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteorol. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027, 1955. a
Chen, X.: How Do Planetary Boundary Layer Schemes Perform in Hurricane Conditions: A Comparison With Large-Eddy Simulations, J. Adv. Model. Earth Syste., 14, e2022MS003088, https://doi.org/10.1029/2022MS003088, 2022. a, b
Chen, X. and Xu, J. Z.: Structural failure analysis of wind turbines impacted by super typhoon Usagi, Eng. Fail. Anal., 60, 391–404, https://doi.org/10.1016/j.engfailanal.2015.11.028, 2016. a
Chen, X., Li, C., and Xu, J.: Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study, J. Wind Eng. Indust. Aerodynam., 147, 132–142, https://doi.org/10.1016/j.jweia.2015.10.007, 2015. a
Download
Short summary
Tropical cyclone winds are challenging for wind turbines. We analyze a tropical cyclone before landfall in a mesoscale model. The simulated wind speeds and storm structure are sensitive to the boundary parametrization. However, independent of the boundary layer parametrization, the median change in wind speed and wind direction with height is small relative to wind turbine design standards. Strong spatial organization of wind shear and veer along the rainbands may increase wind turbine loads.
Altmetrics
Final-revised paper
Preprint