Articles | Volume 3, issue 2
https://doi.org/10.5194/wes-3-749-2018
https://doi.org/10.5194/wes-3-749-2018
Research article
 | 
24 Oct 2018
Research article |  | 24 Oct 2018

Online model calibration for a simplified LES model in pursuit of real-time closed-loop wind farm control

Bart M. Doekemeijer, Sjoerd Boersma, Lucy Y. Pao, Torben Knudsen, and Jan-Willem van Wingerden

Related authors

Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023,https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
The revised FLORIDyn model: implementation of heterogeneous flow and the Gaussian wake
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022,https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021,https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Feedforward-Feedback wake redirection for wind farm control
Steffen Raach, Bart Doekemeijer, Sjoerd Boersma, Jan-Willem van Wingerden, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-54,https://doi.org/10.5194/wes-2019-54, 2019
Publication in WES not foreseen
Short summary

Related subject area

Control and system identification
Load reduction for wind turbines: an output-constrained, subspace predictive repetitive control approach
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022,https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
A reference open-source controller for fixed and floating offshore wind turbines
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022,https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Model-based design of a wave-feedforward control strategy in floating wind turbines
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021,https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary

Cited articles

Aho, J., Buckspan, A., Laks, J., Fleming, P. A., Jeong, Y., Dunne, F., Churchfield, M., Pao, L. Y., and Johnson, K.: A tutorial of wind turbine control for supporting grid frequency through active power control, American Control Conference (ACC), 3120–3131, Piscataway, New Jersey, USA, 2012. a
Annoni, J., Gebraad, P. M. O., and Seiler, P.: Wind farm flow modeling using an input-output reduced-order model, American Control Conference (ACC), 506–512, Piscataway, New Jersey, USA, 2016. a
Boersma, S., Doekemeijer, B. M., Gebraad, P. M. O., Fleming, P. A., Annoni, J., Scholbrock, A. K., Frederik, J. A., and van Wingerden, J. W.: A tutorial on control-oriented modeling and control of wind farms, American Control Conference (ACC), 1–18, Piscataway, New Jersey, USA, 2017. a, b, c
Boersma, S., Doekemeijer, B., Vali, M., Meyers, J., and van Wingerden, J.-W.: A control-oriented dynamic wind farm model: WFSim, Wind Energ. Sci., 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, 2018. a, b, c, d, e, f, g, h, i, j
Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J.: A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics, J. Turbul., 13, 1–32, 2012. a, b
Download
Short summary
Most wind farm control algorithms in the literature rely on a simplified mathematical model that requires constant calibration to the current conditions. This paper provides such an estimation algorithm for a dynamic model capturing the turbine power production and flow field at hub height. Performance was demonstrated in high-fidelity simulations for two-turbine and nine-turbine farms, accurately estimating the ambient conditions and wind field inside the farms at a low computational cost.
Altmetrics
Final-revised paper
Preprint