Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 0.6 CiteScore
    0.6
  • h5-index value: 13 h5-index 13
Volume 4, issue 2
Wind Energ. Sci., 4, 355–368, 2019
https://doi.org/10.5194/wes-4-355-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 4, 355–368, 2019
https://doi.org/10.5194/wes-4-355-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Jun 2019

Research article | 20 Jun 2019

Wind direction estimation using SCADA data with consensus-based optimization

Jennifer Annoni et al.

Related authors

The aerodynamics of the curled wake: a simplified model in view of flow control
Luis A. Martínez-Tossas, Jennifer Annoni, Paul A. Fleming, and Matthew J. Churchfield
Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019,https://doi.org/10.5194/wes-4-127-2019, 2019
Short summary
Analysis of control-oriented wake modeling tools using lidar field results
Jennifer Annoni, Paul Fleming, Andrew Scholbrock, Jason Roadman, Scott Dana, Christiane Adcock, Fernando Porte-Agel, Steffen Raach, Florian Haizmann, and David Schlipf
Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018,https://doi.org/10.5194/wes-3-819-2018, 2018
Short summary
A simulation study demonstrating the importance of large-scale trailing vortices in wake steering
Paul Fleming, Jennifer Annoni, Matthew Churchfield, Luis A. Martinez-Tossas, Kenny Gruchalla, Michael Lawson, and Patrick Moriarty
Wind Energ. Sci., 3, 243–255, https://doi.org/10.5194/wes-3-243-2018,https://doi.org/10.5194/wes-3-243-2018, 2018
Short summary
Assessment of wind turbine component loads under yaw-offset conditions
Rick Damiani, Scott Dana, Jennifer Annoni, Paul Fleming, Jason Roadman, Jeroen van Dam, and Katherine Dykes
Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018,https://doi.org/10.5194/wes-3-173-2018, 2018
Short summary
Field test of wake steering at an offshore wind farm
Paul Fleming, Jennifer Annoni, Jigar J. Shah, Linpeng Wang, Shreyas Ananthan, Zhijun Zhang, Kyle Hutchings, Peng Wang, Weiguo Chen, and Lin Chen
Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017,https://doi.org/10.5194/wes-2-229-2017, 2017
Short summary

Related subject area

Control and system identification
Field testing of a local wind inflow estimator and wake detector
Johannes Schreiber, Carlo L. Bottasso, and Marta Bertelè
Wind Energ. Sci., 5, 867–884, https://doi.org/10.5194/wes-5-867-2020,https://doi.org/10.5194/wes-5-867-2020, 2020
Short summary
Design and analysis of a wake steering controller with wind direction variability
Eric Simley, Paul Fleming, and Jennifer King
Wind Energ. Sci., 5, 451–468, https://doi.org/10.5194/wes-5-451-2020,https://doi.org/10.5194/wes-5-451-2020, 2020
Short summary
Periodic dynamic induction control of wind farms: proving the potential in simulations and wind tunnel experiments
Joeri Alexis Frederik, Robin Weber, Stefano Cacciola, Filippo Campagnolo, Alessandro Croce, Carlo Bottasso, and Jan-Willem van Wingerden
Wind Energ. Sci., 5, 245–257, https://doi.org/10.5194/wes-5-245-2020,https://doi.org/10.5194/wes-5-245-2020, 2020
Short summary
Continued Results from a Field Campaign of Wake Steering Applied at a Commercial Wind Farm: Part 2
Paul Fleming, Jennifer King, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, David Jager, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-104,https://doi.org/10.5194/wes-2019-104, 2020
Revised manuscript accepted for WES
Short summary
Real-time optimization of wind farms using modifier adaptation and machine learning
Leif Erik Andersson and Lars Imsland
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2020-18,https://doi.org/10.5194/wes-2020-18, 2020
Revised manuscript accepted for WES
Short summary

Cited articles

Baros, S. and Ilic, M.: Distributed Torque Control of Deloaded Wind DFIGs for Wind Farm Power Output Regulation, IEEE T. Power Syst., 32, 4590–4599, 2017.
Barthelmie, R. J., Wang, H., Doubrawa, P., and Pryor, S.: Best Practice for Measuring Wind Speeds and Turbulence Offshore through In-Situ and Remote Sensing Technologies, available at: http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/spryor/DoE_AIATOWEA/DoE2016Barthelmieetal_BestPractice_070716-1djxj4x.pdf (last access: June 2019), 2016.
Bay, C., Annoni, J., Taylor, T., Pao, L., and Johnson, K.: Active Power Control for Wind Farms Using Distributed Model Predictive Control and Nearest Neighbor Communication, in: IEEE 2018 Annual American Control Conference (ACC), 682–687, 2018.
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3, 1–122, 2011.
Ebegbulem, J. and Guay, M.: Distributed Extremum Seeking Control for Wind Farm Power Maximization, in: International Federation of Automatic Control, IFAC-PapersOnLine, 50, 147–152, 2017.
Publications Copernicus
Download
Short summary
Typically, turbines do not share information with nearby turbines in a wind farm. Relying on a single turbine sensor on the back of a turbine nacelle can lead to large errors in yaw misalignment or excessive yawing due to noisy sensor measurements. The wind farm consensus control approach in this paper shows the benefits of sharing information between nearby turbines by computing a robust estimate of the wind direction using noisy sensor information from these neighboring turbines.
Typically, turbines do not share information with nearby turbines in a wind farm. Relying on a...
Citation