Articles | Volume 6, issue 3
https://doi.org/10.5194/wes-6-791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Active flap control with the trailing edge flap hinge moment as a sensor: using it to estimate local blade inflow conditions and to reduce extreme blade loads and deflections
Sebastian Perez-Becker
CORRESPONDING AUTHOR
Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Berlin, Germany
David Marten
Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Berlin, Germany
Christian Oliver Paschereit
Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Berlin, Germany
Related authors
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Short summary
Wind turbines need to be simulated for thousands of hours to estimate design loads. Mid-fidelity numerical models are typically used for this task to strike a balance between computational cost and accuracy. The considerable displacements of floating wind turbines may be a challenge for some of these models. This paper enhances comprehension of how modeling theories affect floating wind turbine loads by comparing three codes across three turbines, simulated in a real environment.
Robert Behrens de Luna, Francesco Papi, David Marten, and Christian Oliver Paschereit
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-174, https://doi.org/10.5194/wes-2025-174, 2025
Preprint under review for WES
Short summary
Short summary
Floating offshore wind turbines make wind resources in deeper waters accessible. However, these systems are more complex and costly than fixed-bottom wind turbines and require further optimization to reduce cost. This study analyzed the effect of aeroelastic modeling fidelity on the design of the floater and the wind turbine controller. The results showed that an increase in fidelity resulted in lighter platforms, influenced controller tuning and led to generally lower costs overall.
Francesco Papi, Giancarlo Troise, Robert Behrens de Luna, Joseph Saverin, Sebastian Perez-Becker, David Marten, Marie-Laure Ducasse, and Alessandro Bianchini
Wind Energ. Sci., 9, 981–1004, https://doi.org/10.5194/wes-9-981-2024, https://doi.org/10.5194/wes-9-981-2024, 2024
Short summary
Short summary
Wind turbines need to be simulated for thousands of hours to estimate design loads. Mid-fidelity numerical models are typically used for this task to strike a balance between computational cost and accuracy. The considerable displacements of floating wind turbines may be a challenge for some of these models. This paper enhances comprehension of how modeling theories affect floating wind turbine loads by comparing three codes across three turbines, simulated in a real environment.
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Félicien Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024, https://doi.org/10.5194/wes-9-623-2024, 2024
Short summary
Short summary
A novel hydrodynamic module of QBlade is validated on three floating offshore wind turbine concepts with experiments and two widely used simulation tools. Further, a recently proposed method to enhance the prediction of slowly varying drift forces is adopted and tested in varying met-ocean conditions. The hydrodynamic capability of QBlade matches the current state of the art and demonstrates significant improvement regarding the prediction of slowly varying drift forces with the enhanced model.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022, https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Short summary
This paper investigates the potentials and the limitations of mini Gurney flaps and their combination with vortex generators for improved rotor blade performance of wind turbines. These small passive add-ons are installed in order to increase the annual energy production by mitigating the effects of both early separation toward the root region and surface erosion toward the tip region of the blade. As such, this study contributes to the reliable and long-term generation of renewable energy.
Rodrigo Soto-Valle, Stefano Cioni, Sirko Bartholomay, Marinos Manolesos, Christian Navid Nayeri, Alessandro Bianchini, and Christian Oliver Paschereit
Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022, https://doi.org/10.5194/wes-7-585-2022, 2022
Short summary
Short summary
This paper compares different vortex identification methods to evaluate their suitability to study the tip vortices of a wind turbine. The assessment is done through experimental data from the wake of a wind turbine model. Results show comparability in some aspects as well as significant differences, providing evidence to justify further comparisons. Therefore, this study proves that the selection of the most suitable postprocessing methods of tip vortex data is pivotal to ensure robust results.
Sirko Bartholomay, Tom T. B. Wester, Sebastian Perez-Becker, Simon Konze, Christian Menzel, Michael Hölling, Axel Spickenheuer, Joachim Peinke, Christian N. Nayeri, Christian Oliver Paschereit, and Kilian Oberleithner
Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021, https://doi.org/10.5194/wes-6-221-2021, 2021
Short summary
Short summary
This paper presents two methods on how to estimate the lift force that is created by a wing. These methods were experimentally assessed in a wind tunnel. Furthermore, an active trailing-edge flap, as seen on airplanes for example, is used to alleviate fluctuating loads that are created within the employed wind tunnel. Thereby, an active flow control device that can potentially serve on wind turbines to lower fatigue or lower the material used for the blades is examined.
Rodrigo Soto-Valle, Sirko Bartholomay, Jörg Alber, Marinos Manolesos, Christian Navid Nayeri, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 1771–1792, https://doi.org/10.5194/wes-5-1771-2020, https://doi.org/10.5194/wes-5-1771-2020, 2020
Short summary
Short summary
In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach used a reduced number of pressure tap data located close to the blade leading edge. The results were compared with the measurements from three external probes mounted on the blade at different radial positions and with analytical calculations.
Jörg Alber, Rodrigo Soto-Valle, Marinos Manolesos, Sirko Bartholomay, Christian Navid Nayeri, Marvin Schönlau, Christian Menzel, Christian Oliver Paschereit, Joachim Twele, and Jens Fortmann
Wind Energ. Sci., 5, 1645–1662, https://doi.org/10.5194/wes-5-1645-2020, https://doi.org/10.5194/wes-5-1645-2020, 2020
Short summary
Short summary
The aerodynamic impact of Gurney flaps is investigated on the rotor blades of the Berlin Research Turbine. The findings of this research project contribute to performance improvements of different-size rotor blades. Gurney flaps are considered a worthwhile passive flow-control device in order to alleviate the adverse effects of both early separation in the inner blade region and leading-edge erosion throughout large parts of the blade span.
Cited articles
Andersen, P. B.: Advanced Load Alleviation for Wind Turbines using Adaptive
Trailing Edge Flaps: Sensoring and Control, PhD thesis, Technical University of Denmark, Risø, Denmark, 2010. a
Andersen, P. B., Henriksen, L., Gaunaa, M., Bak, C., and Buhl, T.: Deformable
trailing edge flaps for modern megawatt wind turbine controllers using strain
gauge sensors, Wind Energy, 13, 193–206, https://doi.org/10.1002/we.371, 2010. a
Bak, C., Madsen, H. A., and Johansen, J.: Influence from Blade-Tower
Interaction on Fatigue Loads and Dynamics, in: Proceedings of the 2001 European Wind Energy Conference and Exhibition, Copenhagen, Denmark, 394–397, 2001. a
Barlas, T. and van Kuik, G. A. M.: Review of State of the Art in Smart Rotor
Control Research for Wind Turbines, Prog. Aerosp. Sci., 46, 1–27, https://doi.org/10.1016/j.paerosci.2009.08.002, 2010. a
Barlas, T., van der Veen, G., and van Kuik, G. A. M.: Model Predictive Control for Wind Turbines with Distributed Active Flaps: Incorporating Inflow Signals and Actuator Constraints, Wind Energy, 15, 757–771, https://doi.org/10.1002/we.503, 2012. a, b
Barlas, T., Tibaldi, C., Zahle, F., and Madsen, H. A.: Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps,
in: 34th Wind Energy Symposium, 4–8 January 2016, San Diego, CA, USA, 1–11, https://doi.org/10.2514/6.2016-1262, 2016a. a
Barlas, T., Olsen, A. S., Madsen, H. A., Andersen, T. L., Ai, Q., and Weaver,
P. M.: Aerodynamic and Load Control Performance Testing of a Morphing Trailing Edge Flap System on an Outdoor Rotating Test Rig, J. Phys.: Conf. Ser., 1037, 022018, https://doi.org/10.1088/1742-6596/1037/2/022018, 2018. a, b
Bartholomay, S., Mihos, G., Perez-Becker, S., Pechlivanoglou, G., Nayeri,
C. N., Nikolaou, G., and Paschereit, C. O.: Towards Active Flow Control on a
Research Scale Wind Turbine Using Trailing Edge Flaps, in: AIAA SciTech
Proceedings 2018, Kissimee, Florida, USA, https://doi.org/10.2514/6.2018-1245, 2018. a, b
Bartholomay, S., Wester, T. T. B., Perez-Becker, S., Konze, S., Menzel, C., Hölling, M., Spickenheuer, A., Peinke, J., Nayeri, C. N., Paschereit, C. O., and Oberleithner, K.: Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps, Wind Energ. Sci., 6, 221–245, https://doi.org/10.5194/wes-6-221-2021, 2021. a
Behrens, T. and Zhu, W. J.: Feasibility of Aerodynamic Flap Hinge Moment
Measurements as Input for Load Alleviation Control, in: Proc. of EWEA 2011,
Brussels, Belgium, 1–8, 2011. a
Berg, D., Wilson, D., Barone, M., Resor, B., Berg, J., Paquette, J., Zayas, J., Kota, S., Ervin, G., and Maric, D.: The Impact of Active Aerodynamic Load
Control on Fatigue and Energy Capture at Low Wind Speed Sites, in: European
Wind Energy Conference & Exhibition 2009, Marseille, France, 2670–2679, available at: https://www.osti.gov/biblio/1141815 (last access: 19 May 2021), 2009. a
Bergami, L. and Gaunaa, M.: ATEFlap Aerodynamic Model, a Dynamic Stall Model
Including the Effects of Trailing Edge Flap Deflection, Tech. Rep. Risø-R-1792, DTU Wind Energy, Risø, Denmark, available at: https://orbit.dtu.dk/files/6599679/ris-r-1792.pdf (last access: 19 May 2021), 2012. a
Bergami, L. and Gaunaa, M.: Analysis of Aeroelastic Loads and their
Contributions to Fatigue Damage, J. Phys.: Conf. Ser., 555, 012007, https://doi.org/10.1088/1742-6596/555/1/012007, 2014. a, b
Bergami, L. and Poulsen, N.: A Smart Rotor Configuration with Linear Quadratic Control of Adaptive Trailing Edge Flaps for Active Load Alleviation, Wind Energy, 18, 625–641, https://doi.org/10.1002/we.1716, 2015. a
Bernhammer, L., van Kuik, G. A. M., and De Breuker, R.: Fatigue and extreme
load reduction of wind turbine components using smart rotors, J. Wind Eng. Indust. Aerodynam., 154, 84–95, https://doi.org/10.1016/j.jweia.2016.04.001, 2016. a
Bertelè, M., Bottasso, C. L., Cacciola, S., Daher Adegas, F., and Delport, S.: Wind inflow observation from load harmonics, Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017, 2017. a
Borg, M., Mirzaei, M., and Bredmose, H.: LIFES50+ Deliverable D1.2: Wind
Turbine Models for the Design, Tech. Rep. E-101, DTU Wind Energy, Risø,
Denmark, 2015. a
Bossanyi, E. A.: Individual Blade Pitch Control for Load Reduction, Wind
Energy, 6, 119–128, https://doi.org/10.1002/we.76, 2003. a
Burger, B.: Power Generation in Germany – Assesment of 2017, Tech. rep.,
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, available at:
https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/Stromerzeugung_2017_e.pdf
(last access: 19 May 2021), 2018. a
Chaviaropoulos, P., Karga, I., Harkness, C., and Hendriks, B.: INNWIND
Deliverable 1.23: PI-Based Assesment of Innovative Concepts (Methodological
Issues), Tech. rep., INNWIND.eu, available at:
http://www.innwind.eu/publications/deliverable-reports (last access: 19 May 2021), 2014. a
Chen, Z., Stol, K., and Mace, B.: System Identification and Controller Design
for individual Pitch and Trailing Edge Flap Control on upscaled Wind Turbines, Wind Energy, 19, 1073–1088, https://doi.org/10.1002/we.1885, 2016. a, b
Chen, Z., Stol, K., and Mace, B.: Wind turbine Blade Optimisation with
Individual Pitch and Trailing Edge Flap Control, Renew. Energy, 103, 750–765, https://doi.org/10.1016/j.renene.2016.11.009, 2017. a, b
Cooperman, A. and Martinez, M.: Load Monitoring for Active Control of Wind
Turbines, Renew. Sustain. Energ. Rev., 41, 189–201,
https://doi.org/10.1016/j.rser.2014.08.029, 2015. a, b, c
Damiani, R., Dana, S., Annoni, J., Fleming, P., Roadman, J., van Dam, J., and
Dykes, K.: Assessment of Wind Turbine Component Loads Under Yaw-Offset
Conditions, Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018, 2018. a
Engels, W. P., Kanev, S., and van Engelen, T.: Distributed Blade Control, in:
Torque: The Science of Making Torque from Wind, Heraklion, Greece, available at:
https://www.researchgate.net/publication/265063622_Distributed_Blade_Control (last access: 19 May 2021), 2010. a
Fisher, A. and Madsen, H. A.: Investigation of the theoretical load alleviation potential using trailing edge flaps controlled by inflow data,
Wind Energy, 19, 1567–1583, https://doi.org/10.1002/we.1937, 2016. a
Hansen, M. H., Henriksen, L. C., Hartvig, M., and Christian, L.: Basic DTU
Wind Energy Controller, Tech. Rep. E-0028, DTU Wind Energy, Risø, Denmark, 2013. a
Hariharan, N. and Leishman, J. G.: Unsteady Aerodynamics of a Flapped Airfoil
in Subsonic Flow by Indicial Concepts, in: Proc. of the AIAA 36th Structures, Structural Dynamics and Materials Conference, New Orleans, 613–634, https://doi.org/10.2514/6.1995-1228, 1995. a
Henriksen, L. C., Bergami, L., and Andersen, P. B.: A Model Based Control
Methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a
common Framework, in: Proceedings of the EWEA, Vienna, Austria, available at:
https://orbit.dtu.dk/en/publications/a-model-based-control-methodology-combining-blade-pitch (last access: 19 May 2021), 2013. a
Iribas, M., Hansen, M. H., Mahmood, M., Tibaldi, C., Natarajan, A., Bossanyi,
E., Stock, A., Jamieson, P., Leithead, W., and Schlipf, D.: INNWIND
Deliverable 1.42: Methodology for Feed-Forward Control Strategies using
Nacelle or Blade Based Sensors and Distributed Control, Tech. rep.,
INNWIND.eu, available at: http://www.innwind.eu/publications/deliverable-reports (last access: 19 May 2021), 2015. a
Jamieson, P.: Innovation in Wind Turbine Design, 2nd Edn., John Wiley & Sons Ltd., West Sussex, UK, 2018. a
Jones, B. L., Lio, W. H., and Rossiter, J. A.: Overcoming fundamental
limitations of wind turbine individual blade pitch control with inflow sensors, Wind Energy, 21, 922–936, https://doi.org/10.1002/we.2205, 2018. a, b, c, d
Jonkman, J.: Modeling of the UAE Wind Turbine for Refinement of FAST_AD,
Tech. Rep. TP-500-34755, NREL, Golden, Colorado, 2003. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW
Reference Wind Turbine for Offshore System Development, Tech. Rep. TP-500-38060, NREL, Golden, Colorado, 2009. a
Kanda, A. and Dowell, E. H.: Worst-case gust-response analysis for typical
airfoil section with control surface, J. Aircraft, 42, 956–962,
https://doi.org/10.2514/1.8931, 2005. a
Kracht, P., Perez-Becker, S., Richard, J. B., and Fischer, B.: Performance
Improvement of a Point Absorber Wave Energy Converter by Application of an
Observer-Based Control: Results From Wave Tank Testing, IEEE T. Indust. Appl., 51, 3426–3434, https://doi.org/10.1109/TIA.2015.2405892, 2015. a, b
Lackner, M. and van Kuik, G. A. M.: A Comparison of Smart Rotor Control
Approaches using Trailing Edge Flaps and individual Pitch Control, Wind
Energy, 13, 117–134, https://doi.org/10.1002/we.353, 2010. a
Madsen, H. A., Larsen, T. J., Pirrung, G. R., Li, A., and Zahle, F.:
Implementation of the Blade Element Momentum Model on a Polar Grid and its
Aeroelastic Load Impact, Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020, 2020. a
Manolas, D., Spyropoulos, N., Serafeim, G., Riziotis, V., Chaviaropoulos, P.,
and Voutsinas, S.: Inflow-based Flap Control on a 10 MW-Scale Wind Turbine
Using a Spinner Anemometer, J. Phys.: Conf. Ser., 1037, 032045, https://doi.org/10.1088/1742-6596/1037/3/032045, 2018. a
Marten, D., Pechlivanoglou, G., Nayeri, C. N., and Paschereit, C. O.:
Integration of a WT Blade Design tool in XFOIL/XFLR5, in: 10th German Wind Energy Conference (DEWEK 2010), Bremen, Germany, available at:
https://www.researchgate.net/publication/275638785_Integration_of_a_WT_Blade_Design_Tool_in_XFoilXFLR5 (last access: 19 May 2021), 2010. a
Marten, D., Lennie, M., Pechlivanoglou, G., Nayeri, C. N., and Paschereit,
C. O.: Implementation, Optimization and Validation of a Nonlinear Lifting
Line-Free Vortex Wake Module within the Wind Turbine Simulation Code QBlade, ASME J. Eng. Gas Turb. Power, 138, 072601, https://doi.org/10.1115/GT2015-43265, 2015. a
Moriarty, P. and Hansen, A.: AeroDyn Theory Manual, Tech. Rep. EL-500-36881,
NREL, Golden, Colorado, https://doi.org/10.2172/15014831, 2005. a
Navalkar, S. T., Van Wingerden, J. W., Van Solingen, E., Oomen, T., and van Kuik, G. A. M.: Subspace Predictive Repetitive Control for Wind Turbine Load Alleviation using Trailing Edge Flaps, in: Proceedings of the American
Control Conference, Portland, USA, 4422–4427, https://doi.org/10.1109/ACC.2014.6859094, 2014. a
Ng, B., Palacios, R., Kerrigan, E., Graham, M., and Hesse, H.: Aerodynamic
load control in horizontal axis wind turbines with combined aeroelastic
tailoring and trailing-edge flaps, Wind Energy, 19, 243–263,
https://doi.org/10.1002/we.1830, 2016. a
NREL: FAST v8.15, available at: https://www.nrel.gov/wind/nwtc/fastv8.html,last access: 19 May 2021. a
Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and
Paschereit, C. O.: Is the Blade Element Momentum theory overestimating wind
turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and
QBlade's Lifting-Line Free Vortex Wake method, Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, 2020. a, b, c
Perez-Becker, S., Marten, D., Nayeri, C. N., and Paschereit, C. O.:
Implementation and Validation of an Advanced Wind Energy Controller in
Aero-Servo-Elastic Simulations Using the Lifting Line Free Vortex Wake
Model, Energies, 14, 783, https://doi.org/10.3390/en14030783, 2021. a, b
Plumley, C.: The Smart Rotor Wind Turbine, PhD thesis, University of
Strathclyde, Strathclyde, 2015. a
Plumley, C., Graham, M., Leithead, W., Bossanyi, E. A., and Jamieson, P.:
Supplementing Wind Turbine Pitch Control with a Trailing Edge Flap Smart Rotor, in: Proceedings of the 3rd Renewable Power Generation Conference (RPG 2014), Naples, Italy, 1–6, https://doi.org/10.1049/cp.2014.0919, 2014a.
a
Plumley, C., Leithead, W., Jamieson, P., Bossanyi, E. A., and Graham, M.:
Comparison of individual Pitch and Smart Rotor Control Strategies for Load
Reduction, J. Phys.: Conf. Ser., 524, 012054, https://doi.org/10.1088/1742-6596/524/1/012054, 2014b. a
Simley, E. and Pao, L.: Evaluation of a Wind Speed Estimator for effective
Hub-Height and Shear Components, Wind Energy, 19, 167–184, https://doi.org/10.1002/we.1817, 2016. a
Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J.,
Taylor, M., Sugiyama, H., and Negrut, D.: Chrono: An Open Source Multi-Physics Dynamics Engine, in: Proceedings of the International Conference on High Performance Computing in Science and Engineering, Solan, Czech Republic, 19–49, https://doi.org/10.1007/978-3-319-40361-8_2, 2016. a
TU Berlin: QBlade, available at: https://www.qblade.org/, last access: 19 May 2021. a
Ungurán, R., Petrović, V., Pao, L. Y., and Kühn, M.: Performance Evaluation of a Blade-Mounted LiDAR with Dynamic Versus Fixed Parameters through Feedback-Feedforward Individual Pitch and Trailing Edge Flap Control, J. Phys.: Conf. Ser., 1037, 032004, https://doi.org/10.1088/1742-6596/1037/3/032004, 2018. a
Wendler, J., Marten, D., Pechlivanoglou, G., Nayeri, C. N., and Paschereit,
C. O.: An Unsteady Aerodynamics Model for Lifting Line Free Vortex Wake
Simulations of HAWT and VAWT in QBlade, in: Proceedings of ASME Turbo Expo:
Turbine Technical Conference and Exposition GT2016, Seoul, South Korea, V009T46A011, https://doi.org/10.1115/GT2016-57184, 2016. a
Wilson, D., Berg, D., Resor, B., Barone, M., and Berg, J.: Combined Individual Pitch Control and Active Aerodynamic Load Controller Investigation for the 5 MW Upwind Turbine, in: AWEA Wind Power Conference & Exhibition,
Chicago, USA, 1–12, available at:
https://energy.sandia.gov/wp-content/gallery/uploads/AWEA-092875C.pdf (last access: 19 May 2021), 2009. a
Zhang, M., Tan, B., and Xu, J.: Smart fatigue load control on the large-scale
wind turbine blades using different sensing signals, Renew. Energy, 87, 111–119, https://doi.org/10.1016/j.renene.2015.10.011, 2016. a, b
Short summary
Active trailing edge flaps can potentially enable further increases in wind turbine sizes without the disproportionate increase in loads, thus reducing the cost of wind energy even further. Extreme loads and critical deflections of the turbine blade are design-driving issues that can effectively be reduced by flaps. This paper considers the flap hinge moment as an input sensor for a flap controller that reduces extreme loads and critical deflections of the blade in turbulent wind conditions.
Active trailing edge flaps can potentially enable further increases in wind turbine sizes...
Altmetrics
Final-revised paper
Preprint