Articles | Volume 7, issue 4
Wind Energ. Sci., 7, 1693–1710, 2022
Wind Energ. Sci., 7, 1693–1710, 2022
Research article
11 Aug 2022
Research article | 11 Aug 2022

Turbulence in a coastal environment: the case of Vindeby

Rieska Mawarni Putri et al.

Related authors

The COTUR project: remote sensing of offshore turbulence for wind energy application
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157,,, 2021
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions
Pradip Zamre and Thorsten Lutz
Wind Energ. Sci., 7, 1661–1677,,, 2022
Short summary
Spatiotemporal observations of nocturnal low-level jets and impacts on wind power production
Eduardo Weide Luiz and Stephanie Fiedler
Wind Energ. Sci., 7, 1575–1591,,, 2022
Short summary
Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573,,, 2022
Short summary
Brief communication: How does complex terrain change the power curve of a wind turbine?
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532,,, 2022
Short summary
The wide range of factors contributing to wind resource assessment accuracy in complex terrain
Sarah Barber, Alain Schubiger, Sara Koller, Dominik Eggli, Alexander Radi, Andreas Rumpf, and Hermann Knaus
Wind Energ. Sci., 7, 1503–1525,,, 2022
Short summary

Cited articles

Akaike, H.: Fitting autoregressive models for prediction, Ann. Inst. Stat. Math., 21, 243–247, 1969. a
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the US northeastern coast, J. Geophys. Res.-Atmos., 121, 8869–8885, 2016. a
Barthelmie, R. J.: The effects of atmospheric stability on coastal wind climates, Meteorol. Appl., 6, 39–47, 1999. a, b, c, d
Barthelmie, R. J., Courtney, M., Højstrup, J., and Sanderhoff, P.: The Vindeby project: A description, Tech. Rep. 741(EN), Risø National Laboratory, Denmark, (last access: 31 July 2022), 1994. a, b, c, d, e
Benasciutti, D. and Tovo, R.: Fatigue life assessment in non-Gaussian random loadings, Int. J. Fatig., 28, 733–746, 2006. a
Short summary
As offshore wind turbines' sizes are increasing, thorough knowledge of wind characteristics in the marine atmospheric boundary layer (MABL) is becoming crucial to help improve offshore wind turbine design and reliability. The present study discusses the wind characteristics at the first offshore wind farm, Vindeby, and compares them with the wind measurements at the FINO1 platform. Consistent wind characteristics are found between Vindeby measurements and the FINO1 measurements.