Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Turbulence in a coastal environment: the case of Vindeby
Rieska Mawarni Putri
CORRESPONDING AUTHOR
Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 4036 Stavanger, Norway
Etienne Cheynet
Geophysical Institute and Bergen Offshore Wind Centre (BOW), University of Bergen, 5007 Bergen, Norway
Charlotte Obhrai
Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 4036 Stavanger, Norway
Jasna Bogunovic Jakobsen
Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 4036 Stavanger, Norway
Related authors
No articles found.
Shokoufeh Malekmohammadi, Etienne Cheynet, Joachim Reuder, Claus Linnemann, Mikael Sjöholm, Jakob Mann, and Gregor Giebel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3148, https://doi.org/10.5194/egusphere-2025-3148, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper presents a novel measurement technique for long-term, high-temporal resolution wind velocity observations in offshore wind farms, while also addressing the need for spatial coverage. The approach involves the deployment of a ship-based lidar system consisting of two co-located lidars on a vessel. This strategy is designed to enable a detailed assessment of vertical wind velocity within and around offshore wind farms.
Mauro Ghirardelli, Stephan T. Kral, Etienne Cheynet, and Joachim Reuder
Atmos. Meas. Tech., 18, 2103–2124, https://doi.org/10.5194/amt-18-2103-2025, https://doi.org/10.5194/amt-18-2103-2025, 2025
Short summary
Short summary
The SAMURAI-S system is an innovative measurement tool combining a high accuracy wind sensor with a multi-rotor drone to improve atmospheric turbulence observations. While traditional methods lack flexibility and accuracy in dynamic environments, SAMURAI-S provides high maneuverability and precise 3D wind measurements. The research demonstrated the system's ability to match the data quality of conventional methods, with a slight overestimation in vertical turbulence under higher wind conditions.
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci., 10, 733–754, https://doi.org/10.5194/wes-10-733-2025, https://doi.org/10.5194/wes-10-733-2025, 2025
Short summary
Short summary
This study analyses wind speed data at heights up to 500 m to support the design of future large offshore wind turbines and airborne wind energy systems. We compared three wind models (ERA5, NORA3, and NEWA) with lidar measurements at five sites using four performance metrics. ERA5 and NORA3 performed equally well offshore, with NORA3 typically outperforming the other two models onshore. More generally, the optimal choice of model depends on site, altitude, and evaluation criteria.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Cited articles
Akaike, H.: Fitting autoregressive models for prediction, Ann. Inst. Stat. Math., 21, 243–247, 1969. a
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.:
On the predominance of unstable atmospheric conditions in the marine boundary
layer offshore of the US northeastern coast, J. Geophys. Res.-Atmos., 121, 8869–8885, 2016. a
Benasciutti, D. and Tovo, R.: Fatigue life assessment in non-Gaussian random
loadings, Int. J. Fatig., 28, 733–746, 2006. a
Benasciutti, D. and Tovo, R.: Frequency-based fatigue analysis of non-stationary switching random loads, Fatig. Fract. Eng. Mater.Struct., 30, 1016–1029, 2007. a
Benilov, A. Y., Kouznetsov, O., and Panin, G.: On the analysis of wind
wave-induced disturbances in the atmospheric turbulent surface layer,
Bound.-Lay. Meteorol., 6, 269–285, 1974. a
Cheynet, E., Jakobsen, J. B., and Obhrai, C.: Spectral characteristics of
surface-layer turbulence in the North Sea, Energy Proced., 137, 414–427,
2017. a
Cheynet, E., Jakobsen, J. B., and Snæbjörnsson, J.: Flow distortion
recorded by sonic anemometers on a long-span bridge: Towards a better
modelling of the dynamic wind load in full-scale, J. Sound Vibrat., 450, 214–230, 2019. a
Cheynet, E., Flügge, M., Reuder, J., Jakobsen, J. B., Heggelund, Y., Svardal, B., Saavedra Garfias, P., Obhrai, C., Daniotti, N., Berge, J., Duscha, C., Wildmann, N., Onarheim, I. H., and Godvik, M.: The COTUR project: remote sensing of offshore turbulence for wind energy application, Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, 2021. a
Chougule, A., Mann, J., Kelly, M., Sun, J., Lenschow, D., and Patton, E.:
Vertical cross-spectral phases in neutral atmospheric flow, J. Turbulence, 36, 1–13, https://doi.org/10.1080/14685248.2012.711524, 2012. a
De Maré, M. and Mann, J.: Validation of the Mann spectral tensor for
offshore wind conditions at different atmospheric stabilities, J. Phys.: Conf. Ser., 524, 012106, https://doi.org/10.1088/1742-6596/524/1/012106, 2014. a
D'Errico, J.: inpaint_nans, MATLAB Central File Exchange, http://kr.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans (last access: November 2021), 2004. a
Dobson, F. W.: Review of reference height for and averaging time of surface
wind measurements at sea, World Meteorological Organization, https://library.wmo.int/doc_num.php?explnum_id=7561 (last access: 2 March 2021), 1981. a
Doubrawa, P., Churchfield, M. J., Godvik, M., and Sirnivas, S.: Load response
of a floating wind turbine to turbulent atmospheric flow, Appl. Energy, 242, 1588–1599, 2019. a
Edson, J. and Fairall, C.: Similarity relationships in the marine atmospheric
surface layer for terms in the TKE and scalar variance budgets, J. Atmos. Sci., 55, 2311–2328, 1998. a
Emeis, S. and Türk, M.: Wind-driven wave heights in the German Bight, Ocean Dynam., 59, 463–475, 2009. a
ESDU 85020: ESDU 85020 Characteristics of atmospheric turbulence near the
ground. Part II: single point data for strong winds (neutral atmosphere),
ESDU – Engineering Sciences Data Unit, https://www.osti.gov/etdeweb/biblio/10158377 (last access:
31 July 2022), 2002. a
Geernaert, G.: Measurements of the angle between the wind vector and wind
stress vector in the surface layer over the North Sea, J. Geophys.
Res.-Oceans, 93, 8215–8220, 1988. a
Geernaert, G., Hansen, F., Courtney, M., and Herbers, T.: Directional attributes of the ocean surface wind stress vector, J. Geophys. Res.-Oceans, 98, 16571–16582, 1993. a
GE Renewable Energy: Haliade-X offshore wind turbine,
https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine,
last access: 8 April 2021. a
Grachev, A., Fairall, C., Hare, J., Edson, J., and Miller, S.: Wind stress
vector over ocean waves, J. Phys. Oceanogr., 33, 2408–2429, 2003. a
Grare, L., Lenain, L., and Melville, W. K.: Wave-coherent airflow and critical layers over ocean waves, J. Phys. Oceanogr., 43, 2156–2172, 2013. a
Hansen, A. and Butterfield, C.: Aerodynamics of horizontal-axis wind turbines, Annu. Rev. Fluid Mech., 25, 115–149, 1993. a
Hansen, K. S., Larsen, G. C., and Ott, S.: Dependence of offshore wind turbine fatigue loads on atmospheric stratification, J. Phys.: Conf. Ser., 524, 012165, https://doi.org/10.1088/1742-6596/524/1/012165, 2014. a
Hansen, K. S., Vasiljevic, N., and Sørensen, S. A.: Resource data and
turbulence array measurements from the 3 Vindeby masts, DTU,
https://doi.org/10.11583/DTU.14387480.v1, 2021. a
Högström, U.: Von Karman's constant in atmospheric boundary layer flow: Reevaluated, J. Atmos. Sci., 42, 263–270, 1985. a
Högström, U.: Non-dimensional wind and temperature profiles in the
atmospheric surface layer: A re-evaluation, in: Topics in Micrometeorology. A
Festschrift for Arch Dyer, Springer, 55–78, https://doi.org/10.1007/978-94-009-2935-7_6, 1988. a
Hojstrup, J.: A statistical data screening procedure, Meas. Sci. Technol., 4, 153–157, https://doi.org/10.1088/0957-0233/4/2/003/, 1993. a
Holtslag, M. C., Bierbooms, W. A. A. M., and Van Bussel, G. J. W.: Wind turbine fatigue loads as a function of atmospheric conditions offshore, Wind Energy, 19, 1917–1932, 2016. a
Hristov, T., Friehe, C., and Miller, S.: Wave-coherent fields in air flow over ocean waves: Identification of cooperative behavior buried in turbulence, Phys. Rev. Lett., 81, 5245, https://doi.org/10.1103/PhysRevLett.81.5245, 1998. a
Janssen, P. A.: Wave-induced stress and the drag of air flow over sea waves,
J. Phys. Oceanogr., 19, 745–754, 1989. a
Jiang, Q.: Influence of Swell on Marine Surface-Layer Structure, J. Atmos. Sci., 77, 1865–1885, 2020. a
Jiang, Q., Wang, Q., Wang, S., and Gaberšek, S.: Turbulence adjustment
and scaling in an offshore convective internal boundary layer: A CASPER case
study, J. Atmos. Sci., 77, 1661–1681, 2020. a
Jonkman, J. and Musial, W.: Offshore code comparison collaboration (OC3) for
IEA Wind Task 23 offshore wind technology and deployment, Tech. rep., NREL – National Renewable Energy Lab., Golden, CO, USA, https://www.nrel.gov/docs/fy11osti/48191.pdf (last access:
21 December 2020), 2010. a
Kelly, M.: From standard wind measurements to spectral characterization: turbulence length scale and distribution, Wind Energ. Sci., 3, 533–543, https://doi.org/10.5194/wes-3-533-2018, 2018. a
Kristensen, L. and Jensen, N.: Lateral coherence in isotropic turbulence and in the natural wind, Bound.-Lay. Meteorol., 17, 353–373, 1979. a
Kristensen, L., Panofsky, H. A., and Smith, S. D.: Lateral coherence of
longitudinal wind components in strong winds, Bound.-Lay. Meteorol., 21,
199–205, 1981. a
Larsén, X. G., Petersen, E. L., and Larsen, S. E.: Variation of
boundary-layer wind spectra with height, Q. J. Roy. Meteorol. Soc., 144, 2054–2066, 2018. a
Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L.: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, J. Exp. Social Psychol., 49, 764–766, 2013. a
Lumley, J. and Panofsky, H.: The Structure of Atmospheric Turbulence,
Interscience monographs and texts in physics and astronomy, Interscience
Publishers, ISBN 9780470553657, 1964. a
Mahrt, L., Vickers, D., Howell, J., Højstrup, J., Wilczak, J. M., Edson, J.,
and Hare, J.: Sea surface drag coefficients in the Risø Air Sea Experiment, J. Geophys. Res.-Oceans, 101, 14327–14335, 1996. a
Mahrt, L., Vickers, D., Edson, J., Wilczak, J. M., Hare, J., and Højstrup, J.: Vertical structure of turbulence in offshore flow during RASEX, J. Geophys. Res.-Oceans, 101, 14327–14335, 2001. a
Mikkelsen, T., Larsen, S. E., Jørgensen, H. E., Astrup, P., and Larsén, X. G.: Scaling of turbulence spectra measured in strong shear flow near the Earth's surface, Physica Scripta, 92, 124002, https://doi.org/10.1088/1402-4896/aa91b2, 2017. a
Monin, A. S.: The structure of atmospheric turbulence, Theor. Probabil. Appl., 3, 266–296, 1958. a
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the
atmosphere near the ground, Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163–187,
1954. a
Mouzakis, F., Morfiadakis, E., and Dellaportas, P.: Fatigue loading parameter
identification of a wind turbine operating in complex terrain, J. Wind Eng. Indust. Aerodynam., 82, 69–88, 1999. a
Naito, G.: Spatial structure of surface wind over the ocean, J. Wind Eng. Indust. Aerodynam., 13, 67–76, 1983. a
Nielsen, F. G., Hanson, T. D., and Skaare, B.: Integrated dynamic analysis of
floating offshore wind turbines, in: vol. 47462, 25th International Conference on Offshore Mechanics and Arctic Engineering, 4–9 June 2006, Hamburg, Germany, 671–679, https://doi.org/10.1115/OMAE2006-92291, 2006. a
Nybø, A., Nielsen, F. G., Reuder, J., Churchfield, M. J., and Godvik, M.:
Evaluation of different wind fields for the investigation of the dynamic
response of offshore wind turbines, Wind Energy, 23, 1810–1830, 2020. a
Peña, A. and Gryning, S.-E.: Charnock’s roughness length model and
non-dimensional wind profiles over the sea, Bound.-Lay. Meteorol., 128,
191–203, 2008. a
Peña, A., Dellwik, E., and Mann, J.: A method to assess the accuracy of sonic anemometer measurements, Atmos. Meas. Tech., 12, 237–252, https://doi.org/10.5194/amt-12-237-2019, 2019. a
Power Technology: Full circle: decommissioning the first ever offshore
windfarm,
https://www.power-technology.com/features/full-circle-decommissioning-first-ever-offshore-windfarm/
(last access: 28 March 2021), 2020. a
Putri, R., Obhrai, C., Jakobsen, J., and Ong, M.: Numerical Analysis of the
Effect of Offshore Turbulent Wind Inflow on the Response of a Spar Wind
Turbine, Energies, 13, 2506, https://doi.org/10.3390/en13102506, 2020. a
Robertson, A., Jonkman, J., Vorpahl, F., Popko, W., Qvist, J., Frøyd, L.,
Chen, X., Azcona, J., Uzunoglu, E., Guedes Soares, C., Luan, C., Yutong, H., Pengcheng, F., Yde, A., Larsen, T., Nichols, J., Buils, R., Lei, L., Anders Nygard, T., Manolas, D., Heege, A., Ringdalen Vatne, S., Ormberg, H., Duarte, T., Godreau, C., Fabricius Hansen, H., Wedel Nielsen, A., Riber, H., Le Cunff, C., Abele, R., Beyer, F., Yamaguchi, A., Jin Jung, K., Shin, H., Shi, W., Park, H., Alves, M., and Guérinel, M.: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system, in: vol. 45547, International Conference on Offshore Mechanics and Arctic Engineering,
American Society of Mechanical Engineers, V09BT09A012, https://www.nrel.gov/docs/fy14osti/61154.pdf (last access:
21 December 2020), 2014. a
Robertson, A. N., Shaler, K., Sethuraman, L., and Jonkman, J.: Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads, Wind Energ. Sci., 4, 479–513, https://doi.org/10.5194/wes-4-479-2019, 2019. a
Rosner, B.: Percentage points for a generalized ESD many-outlier procedure,
Technometrics, 25, 165–172, 1983. a
Sacré, C. and Delaunay, D.: Structure spatiale de la turbulence au cours de vents forts sur differents sites, J. Wind Eng. Indust. Aerodynam., 41, 295–303, 1992. a
Sanchez Gomez, M. and Lundquist, J. K.: The effect of wind direction shear on turbine performance in a wind farm in central Iowa, Wind Energ. Sci., 5, 125–139, https://doi.org/10.5194/wes-5-125-2020, 2020. a
Saranyasoontorn, K., Manuel, L., and Veers, P. S.: A comparison of standard
coherence models for inflow turbulence with estimates from field measurements, J. Sol. Energy Eng., 126, 1069–1082, 2004. a
Sathe, A. and Bierbooms, W.: Influence of different wind profiles due to
varying atmospheric stability on the fatigue life of wind turbines, J. Phys.: Conf. Ser., 75, 012056, https://doi.org/10.1088/1742-6596/75/1/012056, 2007. a
Sathe, A., Mann, J., Barlas, T., Bierbooms, W., and van Bussel, G.: Influence
of atmospheric stability on wind turbine loads, Wind Energy, 16, 1013–1032,
2013. a
Schotanus, P., Nieuwstadt, F., and De Bruin, H.: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Bound.-Lay. Meteorol., 26, 81–93, 1983. a
Sempreviva, A. M. and Gryning, S. E.: Humidity fluctuations in the marine
boundary layer measured at a coastal site with an infrared humidity sensor,
Bound.-Lay. Meteorol., 77, 331–352, 1996. a
Sheinman, Y. and Rosen, A.: A dynamic model of the influence of turbulence on
the power output of a wind turbine, J. Wind Eng. Indust. Aerodynam., 39, 329–341, 1992. a
Sjöblom, A. and Smedman, A.-S.: Vertical structure in the marine
atmospheric boundary layer and its implication for the inertial dissipation
method, Bound.-Lay. Meteorol., 109, 1–25, 2003a. a
Sjöblom, A. and Smedman, A.-S.: Vertical structure in the marine
atmospheric boundary layer and its implication for the inertial dissipation
method, Bound.-Lay. Meteorol., 109, 1–25, 2003b. a
Smedman-Högström, A.-S. and Högström, U.: Spectral gap in
surface-layer measurements, J. Atmos. Sci., 32, 340–350, 1975. a
Soucy, R., Woodward, R., and Panofsky, H.: Vertical cross-spectra of horizontal velocity components at the Boulder observatory, Bound.-Lay. Meteorol., 24, 57–66, 1982. a
Stiperski, I. and Rotach, M. W.: On the measurement of turbulence over complex mountainous terrain, Bound.-Lay. Meteorol., 159, 97–121, 2016. a
Stull, R. B.: An Introduction to Boundary Layer Meteorology, in: 1st Edn., Kluwer Academic Publishers, ISBN 978-90-277-2768-8, https://doi.org/10.1007/978-94-009-3027-8, 1988. a
Tamura, H., Drennan, W. M., Collins, C. O., and Graber, H. C.: Turbulent
airflow and wave-induced stress over the ocean, Bound.-Lay. Meteorol., 169, 47–66, 2018. a
Taylor, G. I.: The spectrum of turbulence, P. Roy. Soc. Lond. A, 164, 476–490, 1938. a
Van der Hoven, I.: Power spectrum of horizontal wind speed in the frequency
range from 0.0007 to 900 cycles per hour, J. Atmos. Sci., 14, 160–164, 1957. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O.,
Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P.,
Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a, b
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512–526, 1997. a
Vickers, D. and Mahrt, L.: The cospectral gap and turbulent flux calculations, J. Atmos. Ocean. Tech., 20, 660–672, 2003. a
Weber, R. O.: Remarks on the definition and estimation of friction velocity,
Bound.-Lay. Meteorol., 93, 197–209, 1999. a
Weiler, H. S. and Burling, R.: Direct measurements of stress and spectra of
turbulence in the boundary layer over the sea, J. Atmos. Sci., 24, 653–664, 1967. a
Welch, P.: The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms,
IEEE T. Audio Electroacoust., 15, 70–73, 1967. a
Wendell, L., Gower, G., Morris, V., and Tomich, S.: Wind turbulence
characterization for wind energy development, Tech. rep., Pacific Northwest
Lab., Richland, WA, USA, https://www.osti.gov/servlets/purl/602073 (last access: 3 November 2021), 1991. a
WMO: Guide to meteorological instruments and methods of observation,
Secretariat of the World Meteorological Organization, ISBN 978-92-63-10008-5, 2008. a
Wyngaard, J. C.: On the surface-layer turbulence, in: Workshop on Micrometeorology, edited by: Haugen, D. A., American Meteorological Society, 101–149, https://cir.nii.ac.jp/crid/1570291225953095424 (last access:
1 March 2021), 1973. a
Wyngaard, J. C. and Coté, O. R.: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer, J. Atmos. Sci., 28, 190–201, 1971. a
Short summary
As offshore wind turbines' sizes are increasing, thorough knowledge of wind characteristics in the marine atmospheric boundary layer (MABL) is becoming crucial to help improve offshore wind turbine design and reliability. The present study discusses the wind characteristics at the first offshore wind farm, Vindeby, and compares them with the wind measurements at the FINO1 platform. Consistent wind characteristics are found between Vindeby measurements and the FINO1 measurements.
As offshore wind turbines' sizes are increasing, thorough knowledge of wind characteristics in...
Altmetrics
Final-revised paper
Preprint