Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-1847-2022
https://doi.org/10.5194/wes-7-1847-2022
Research article
 | 
12 Sep 2022
Research article |  | 12 Sep 2022

Scaling effects of fixed-wing ground-generation airborne wind energy systems

Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford

Related authors

Impact of wind profiles on ground-generation airborne wind energy system performance
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023,https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580, https://doi.org/10.5194/wes-4-563-2019,https://doi.org/10.5194/wes-4-563-2019, 2019
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Airborne technology
Dynamic analysis of the tensegrity structure of a rotary airborne wind energy machine
Gonzalo Sánchez-Arriaga, Álvaro Cerrillo-Vacas, Daniel Unterweger, and Christof Beaupoil
Wind Energ. Sci., 9, 1273–1287, https://doi.org/10.5194/wes-9-1273-2024,https://doi.org/10.5194/wes-9-1273-2024, 2024
Short summary
Wake characteristics of a balloon wind turbine and aerodynamic analysis of its balloon using a large eddy simulation and actuator disk model
Aref Ehteshami and Mostafa Varmazyar
Wind Energ. Sci., 8, 1771–1793, https://doi.org/10.5194/wes-8-1771-2023,https://doi.org/10.5194/wes-8-1771-2023, 2023
Short summary
Refining the airborne wind energy system power equations with a vortex wake model
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023,https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary
Swinging Motion of a Kite with Suspended Control Unit Flying Turning Manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-121,https://doi.org/10.5194/wes-2023-121, 2023
Revised manuscript accepted for WES
Short summary
Impact of wind profiles on ground-generation airborne wind energy system performance
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023,https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary

Cited articles

Airborne Wind Europe: Airborne Wind Energy Glossary, https://airbornewindeurope.org/resources/glossary-2/, last access: 29 March 2022. a
Ampyx: Ampyx Power BV, https://www.ampyxpower.com/, last access: 5 June 2020. a, b, c, d
Andersson, J., Åkesson, J., and Diehl, M.: CasADi: A Symbolic Package for Automatic Differentiation and Optimal Control, in: Recent Advances in Algorithmic Differentiation, edited by: Forth, S., Hovland, P., Phipps, E., Utke, J., and Walther, A., Springer, Berlin, Heidelberg, 297–307, https://doi.org/10.1007/978-3-642-30023-3_27, 2012. a
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control, Math. Program. Comput., 11, 1–36, https://doi.org/10.1007/s12532-018-0139-4, 2019. a
Archer, C. L. and Caldeira, K.: Global Assessment of High-Altitude Wind Power, Energies, 2, 307–319, https://doi.org/10.3390/en20200307, 2009. a
Download
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Altmetrics
Final-revised paper
Preprint