Articles | Volume 8, issue 9
https://doi.org/10.5194/wes-8-1387-2023
https://doi.org/10.5194/wes-8-1387-2023
Research article
 | 
08 Sep 2023
Research article |  | 08 Sep 2023

Extending the dynamic wake meandering model in HAWC2Farm: a comparison with field measurements at the Lillgrund wind farm

Jaime Liew, Tuhfe Göçmen, Alan W. H. Lio, and Gunner Chr. Larsen

Related authors

Joint Yaw-Induction Control Optimization for Wind Farms
Kirby S. Heck, Jaime Liew, Ilan M. L. Upfal, and Michael F. Howland
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-90,https://doi.org/10.5194/wes-2025-90, 2025
Preprint under review for WES
Short summary
FarmConners wind farm flow control benchmark – Part 1: Blind test results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022,https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Model-free estimation of available power using deep learning
Tuhfe Göçmen, Albert Meseguer Urbán, Jaime Liew, and Alan Wai Hou Lio
Wind Energ. Sci., 6, 111–129, https://doi.org/10.5194/wes-6-111-2021,https://doi.org/10.5194/wes-6-111-2021, 2021
Short summary
Analytical model for the power–yaw sensitivity of wind turbines operating in full wake
Jaime Liew, Albert M. Urbán, and Søren Juhl Andersen
Wind Energ. Sci., 5, 427–437, https://doi.org/10.5194/wes-5-427-2020,https://doi.org/10.5194/wes-5-427-2020, 2020
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Analysis and calibration of optimal power balance rotor-effective wind speed estimation schemes for large-scale wind turbines
Atindriyo Kusumo Pamososuryo, Fabio Spagnolo, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 987–1006, https://doi.org/10.5194/wes-10-987-2025,https://doi.org/10.5194/wes-10-987-2025, 2025
Short summary
Coleman-free aero-elastic stability methods for three- and two-bladed floating wind turbines
Bogdan Pamfil, Henrik Bredmose, and Taeseong Kim
Wind Energ. Sci., 10, 827–856, https://doi.org/10.5194/wes-10-827-2025,https://doi.org/10.5194/wes-10-827-2025, 2025
Short summary
Multi-task Learning Long Short-term Memory Model to Emulate Wind Turbine Blade Dynamics
Shubham Baisthakur and Breiffni Fitzgerald
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-105,https://doi.org/10.5194/wes-2024-105, 2024
Revised manuscript accepted for WES
Short summary
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024,https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary

Cited articles

Alcayaga, L., Larsen, G. C., Kelly, M., and Mann, J.: Large-Scale Coherent Turbulence Structures in the Atmospheric Boundary Layer over Flat Terrain, J. Atmos. Sci., 79, 3219–3243, 2022. a
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.: LAPACK Users' Guide, third edn., Society for Industrial and Applied Mathematics, Philadelphia, PA, ISBN 978-0-89871-447-0, 1999. a
Becker, M., Ritter, B., Doekemeijer, B., van der Hoek, D., Konigorski, U., Allaerts, D., and van Wingerden, J.-W.: The revised FLORIDyn model: implementation of heterogeneous flow and the Gaussian wake, Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, 2022. a, b
Boersma, S., Doekemeijer, B., Vali, M., Meyers, J., and van Wingerden, J.-W.: A control-oriented dynamic wind farm model: WFSim, Wind Energ. Sci., 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, 2018. a
Bossanyi, E., Ruisi, R., Larsen, G. C., and Pedersen, M. M.: Axial induction control design for a field test at Lillgrund wind farm, J. Phys. Conf. Ser., 2265, 042032, https://doi.org/10.1088/1742-6596/2265/4/042032, 2022. a
Download
Short summary
We present recent research on dynamically modelling wind farm wakes and integrating these enhancements into the wind farm simulator, HAWC2Farm. The simulation methodology is showcased by recreating dynamic scenarios observed in the Lillgrund offshore wind farm. We successfully recreate scenarios with turning winds, turbine shutdown events, and wake deflection events. The research provides opportunities to better identify wake interactions in wind farms, allowing for more reliable designs.
Share
Altmetrics
Final-revised paper
Preprint