Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1381-2024
https://doi.org/10.5194/wes-9-1381-2024
Research article
 | 
25 Jun 2024
Research article |  | 25 Jun 2024

Simulating low-frequency wind fluctuations

Abdul Haseeb Syed and Jakob Mann

Related authors

Turbulence structures and entrainment length scales in large offshore wind farms
Abdul Haseeb Syed, Jakob Mann, Andreas Platis, and Jens Bange
Wind Energ. Sci., 8, 125–139, https://doi.org/10.5194/wes-8-125-2023,https://doi.org/10.5194/wes-8-125-2023, 2023
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Quantifying tropical-cyclone-generated waves in extreme-value-derived design for offshore wind
Sarah McElman, Amrit Shankar Verma, and Andrew Goupee
Wind Energ. Sci., 10, 1529–1550, https://doi.org/10.5194/wes-10-1529-2025,https://doi.org/10.5194/wes-10-1529-2025, 2025
Short summary
Estimating long-term annual energy production from shorter-time-series data: methods and verification with a 10-year large-eddy simulation of a large offshore wind farm
Bernard Postema, Remco A. Verzijlbergh, Pim van Dorp, Peter Baas, and Harm J. J. Jonker
Wind Energ. Sci., 10, 1471–1484, https://doi.org/10.5194/wes-10-1471-2025,https://doi.org/10.5194/wes-10-1471-2025, 2025
Short summary
Evaluating the potential of short-term instrument deployment to improve distributed wind resource assessment
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci., 10, 1451–1470, https://doi.org/10.5194/wes-10-1451-2025,https://doi.org/10.5194/wes-10-1451-2025, 2025
Short summary
Brief communication: A note on the variance of wind speed and turbulence intensity
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025,https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary

Cited articles

absywind: absywind/2D_turbulence_simulation: General (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.12202048, 2024. a
Alcayaga, L., Larsen, G. C., Kelly, M., and Mann, J.: Large-Scale Coherent Turbulence Structures in the Atmospheric Boundary Layer over Flat Terrain, J. Atmos. Sci., 79, 3219–3243, https://doi.org/10.1175/JAS-D-21-0083.1, 2022. a
Batchelor, G. K.: The theory of homogeneous turbulence, Cambridge University, ISBN 9780521041171, 1953. a
Cheynet, E., Jakobsen, J. B., and Reuder, J.: Velocity Spectra and Coherence Estimates in the Marine Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 169, 429–460, 2018. a
Chougule, A., Mann, J., Kelly, M., Sun, J., Lenschow, D. H., and Patton, E. G.: Vertical cross-spectral phases in neutral atmospheric flow, J. Turbul., 13, N36, https://doi.org/10.1080/14685248.2012.711524, 2012. a
Download
Short summary
Wind flow consists of swirling patterns of air called eddies, some as big as many kilometers across, while others are as small as just a few meters. This paper introduces a method to simulate these large swirling patterns on a flat grid. Using these simulations we can better figure out how these large eddies affect big wind turbines in terms of loads and forces.
Share
Altmetrics
Final-revised paper
Preprint