Articles | Volume 9, issue 3
https://doi.org/10.5194/wes-9-555-2024
https://doi.org/10.5194/wes-9-555-2024
Research article
 | 
14 Mar 2024
Research article |  | 14 Mar 2024

Seasonal variability of wake impacts on US mid-Atlantic offshore wind plant power production

David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol

Related authors

Simulations suggest offshore wind farms modify low-level jets
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci., 10, 117–142, https://doi.org/10.5194/wes-10-117-2025,https://doi.org/10.5194/wes-10-117-2025, 2025
Short summary
The effects of wind farm wakes on freezing sea spray in the mid-Atlantic offshore wind energy areas
David Rosencrans, Julie K. Lundquist, Mike Optis, and Nicola Bodini
Wind Energ. Sci., 10, 59–81, https://doi.org/10.5194/wes-10-59-2025,https://doi.org/10.5194/wes-10-59-2025, 2025
Short summary
The 2023 National Offshore Wind data set (NOW-23)
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024,https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
The sensitivity of the Fitch wind farm parameterization to a three-dimensional planetary boundary layer scheme
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022,https://doi.org/10.5194/wes-7-2085-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Quantifying tropical-cyclone-generated waves in extreme-value-derived design for offshore wind
Sarah McElman, Amrit Shankar Verma, and Andrew Goupee
Wind Energ. Sci., 10, 1529–1550, https://doi.org/10.5194/wes-10-1529-2025,https://doi.org/10.5194/wes-10-1529-2025, 2025
Short summary
Estimating long-term annual energy production from shorter-time-series data: methods and verification with a 10-year large-eddy simulation of a large offshore wind farm
Bernard Postema, Remco A. Verzijlbergh, Pim van Dorp, Peter Baas, and Harm J. J. Jonker
Wind Energ. Sci., 10, 1471–1484, https://doi.org/10.5194/wes-10-1471-2025,https://doi.org/10.5194/wes-10-1471-2025, 2025
Short summary
Evaluating the potential of short-term instrument deployment to improve distributed wind resource assessment
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci., 10, 1451–1470, https://doi.org/10.5194/wes-10-1451-2025,https://doi.org/10.5194/wes-10-1451-2025, 2025
Short summary
Brief communication: A note on the variance of wind speed and turbulence intensity
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025,https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary

Cited articles

218th Legislature: NJ Renewable Portfolio Standards, https://pub.njleg.gov/bills/2018/A4000/3723_I1.PDF (last access: 10 August 2022), 2018. 
Aitken, M. L., Kosoviæ, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model, J. Renew. Sustain. Ener., 6, 033137, https://doi.org/10.1063/1.4885111, 2014. 
Ancell, B. C., Bogusz, A., Lauridsen, M. J., and Nauert, C. J.: Seeding Chaos: The Dire Consequences of Numerical Noise in NWP Perturbation Experiments, B. Am. Meteorol. Soc., 99, 615–628, https://doi.org/10.1175/BAMS-D-17-0129.1, 2018. 
Antonini, E. G. A., Romero, D. A., and Amon, C. H.: Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods, Appl. Energ., 261, 114426, https://doi.org/10.1016/j.apenergy.2019.114426, 2020. 
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast, J. Geophys. Res.-Atmos., 121, 8869–8885, https://doi.org/10.1002/2016JD024896, 2016. 
Download
Short summary
The US offshore wind industry is developing rapidly. Using yearlong simulations of wind plants in the US mid-Atlantic, we assess the impacts of wind turbine wakes. While wakes are the strongest and longest during summertime stably stratified conditions, when New England grid demand peaks, they are predictable and thus manageable. Over a year, wakes reduce power output by over 35 %. Wakes in a wind plant contribute the most to that reduction, while wakes between wind plants play a secondary role.
Share
Altmetrics
Final-revised paper
Preprint