Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-933-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-933-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The near-wake development of a wind turbine operating in stalled conditions – Part 1: Assessment of numerical models
Pascal Weihing
CORRESPONDING AUTHOR
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany
Marion Cormier
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany
Thorsten Lutz
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany
Ewald Krämer
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany
Related authors
No articles found.
Ferdinand Seel, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 8, 1369–1385, https://doi.org/10.5194/wes-8-1369-2023, https://doi.org/10.5194/wes-8-1369-2023, 2023
Short summary
Short summary
Vortex generators are evaluated on a 2 MW wind turbine rotor blade by computational fluid dynamic methods. Those devices delay flow separation on the airfoils and thus increase their efficiency. On the wind turbine blade, rotational phenomena (e.g. rotational augmentation) appear and interact with the vortices from the vortex generators. The understanding of those interactions is crucial in order to optimise the placement of the vortex generators and evaluate their real efficiency on the blade.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Pradip Zamre and Thorsten Lutz
Wind Energ. Sci., 7, 1661–1677, https://doi.org/10.5194/wes-7-1661-2022, https://doi.org/10.5194/wes-7-1661-2022, 2022
Short summary
Short summary
To get more insight into the influence of the urban-terrain flow on the performance of the rooftop-mounted two-bladed Darrieus vertical-axis wind turbine, scale resolving simulations are performed for a generic wind turbine in realistic terrain under turbulent conditions. It is found that the turbulence and skewed nature of the flow near rooftop locations have a positive impact on the performance of the wind turbine.
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573, https://doi.org/10.5194/wes-7-1551-2022, https://doi.org/10.5194/wes-7-1551-2022, 2022
Short summary
Short summary
The research article presents the results of a study of highly resolved numerical simulations of a wind energy test site in complex terrain that is currently under construction in the Swabian Alps in southern Germany. The numerical results emphasised the importance of considering orography, vegetation, and thermal stratification in numerical simulations to resolve the wind field decently. In this way, the effects on loads, power, and wake of the wind turbine can also be predicted well.
Giorgia Guma, Philipp Bucher, Patrick Letzgus, Thorsten Lutz, and Roland Wüchner
Wind Energ. Sci., 7, 1421–1439, https://doi.org/10.5194/wes-7-1421-2022, https://doi.org/10.5194/wes-7-1421-2022, 2022
Short summary
Short summary
Wind turbine aeroelasticity is becoming more and more important because turbine sizes are increasingly leading to more slender blades. On the other hand, complex terrains are of interest because they are far away from urban areas. These regions are characterized by low velocities and high turbulence and are mostly influenced by the presence of forest, and that is why it is necessary to develop high-fidelity tools to correctly simulate the wind turbine's response.
Florian Wenz, Judith Langner, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 7, 1321–1340, https://doi.org/10.5194/wes-7-1321-2022, https://doi.org/10.5194/wes-7-1321-2022, 2022
Short summary
Short summary
To get a better understanding of the influence of the terrain flow on the unsteady pressure distributions on the wind turbine surface, a fully resolved turbine was simulated in the complex terrain of Perdigão, Portugal. It was found that the pressure fluctuations at the tower caused by vortex shedding are significantly hampered by the terrain flow, while the pressure fluctuations caused by the blade–tower interaction are hardly changed.
Giorgia Guma, Galih Bangga, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 6, 93–110, https://doi.org/10.5194/wes-6-93-2021, https://doi.org/10.5194/wes-6-93-2021, 2021
Short summary
Short summary
With the increase in installed wind capacity, the rotor diameter of wind turbines is becoming larger and larger, and therefore it is necessary to take aeroelasticity into consideration. At the same time, wind turbines are in reality subjected to atmospheric inflow leading to high wind instabilities and fluctuations. Within this work, a high-fidelity chain is used to analyze the effects of both by the use of models of the same turbine with increasing complexity and technical details.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Cited articles
Akay, B.: The root flow of horizontal axis wind turbine blades: Experimental analysis and numerical validation, PhD thesis, TU Delft, Delft, ISBN 978-90-76468-15-0, https://doi.org/10.4233/uuid:2a3f9993-d406-42ee-9d64-57da3fbc0d12, 2016. a, b, c
Bak, C., Aagaard Madsen, H., Schmidt Paulsen, U., Gaunaa, M., Fuglsang, P., Romblad, J., Olesen, N. A., Enevoldsen, P., Laursen, J., and Jensen, L.: DAN-AERO MW: Detailed aerodynamic measurements on a full scale MW wind turbine, in: 2010 European Wind Energy Conference and Exhibition, European Wind Energy Association (EWEA), 20–23 April 2010, Warsaw, Poland, 2010. a
Bartl, J. and Sætran, L.: Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions, Wind Energ. Sci., 2, 55–76, https://doi.org/10.5194/wes-2-55-2017, 2017. a, b
Bastankhah, M. and Porté-Agel, F.: Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region, Phys. Fluids, 29, 065105, https://doi.org/10.1063/1.4984078, 2017. a
Bechmann, A., Sørensen, N. N., and Zahle, F.: CFD simulations of the MEXICO rotor, Wind Energy, 14, 677–689, 2011. a
Boorsma, K. and Schepers, J.: Mexnext III: Definition of first round of calculations, Tech. rep., ECN, https://ntrs.nasa.gov/api/citations/20130001604/downloads/20130001604.pdf (last access: 29 March 2024), 2017. a
Boorsma, K., Schepers, J., Gomez-Iradi, S., Madsen, H. A., Sørensen, N., Shen, W. Z., Schulz, C., and Schreck, S.: Mexnext-II: The Latest Results on Experimental Wind Turbine Aerodynamics, in: EWEA Conference, 10–13 March 2014, Barcelona, https://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-M--14-018 (last access: 29 March 2024), 2014. a
Boorsma, K., Schepers, J., Gomez-Iradi, S., Herraez, I., Lutz, T., Weihing, P., Oggiano, L., Pirrung, G., Madsen, H., Shen, W., Rahimi, H., and Schaffarczyk, P.: Final report of IEA Task 29, Mexnet (Phase 3), Tech. rep., ECN, https://publications.ecn.nl/ECN-E--18-003 (last access: 29 March 2024), 2018. a, b, c, d, e, f, g
Bottasso, C. L., Campagnolo, F., and Petrović, V.: Wind tunnel testing of scaled wind turbine models: Beyond aerodynamics, J. Wind Eng. Indust. Aerodynam., 127, 11–28, 2014. a
Bühler, M., Weihing, P., Klein, L., Lutz, T., and Krämer, E.: Actuator Line Method Simulations for the Analysis of Wind Turbine Wakes Acting on Helicopters, J. Phys.: Conf. Ser., 1037, 062004, https://doi.org/10.1088/1742-6596/1037/6/062004, 2018. a, b, c, d
Carrión, M., Steijl, R., Woodgate, M., Barakos, G., Munduate, X., and Gomez-Iradi, S.: Computational fluid dynamics analysis of the wake behind the MEXICO rotor in axial flow conditions, Wind Energy, 18, 1023–1045, 2015. a
Chaderjian, N. M.: Advances in rotor performance and turbulent wake simulation using DES and adaptive mesh refinement, https://ntrs.nasa.gov/api/citations/20130001604/downloads/20130001604.pdf (last access: 29 March 2024), 2012. a
Chamorro, L. P. and Porté-Agel, F.: A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects, Bound.-Lay. Meteorol., 132, 129–149, 2009. a
Chamorro, L. P. and Porté-Agel, F.: Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study, Bound.-Lay. Meteorol., 136, 515–533, 2010. a
Churchfield, M. J., Schreck, S. J., Martinez, L. A., Meneveau, C., and Spalart, P. R.: An advanced actuator line method for wind energy applications and beyond, in: 35th Wind Energy Symposium, 9–13 January 2017, Grapevine, Texas, p. 1998, https://doi.org/10.2514/6.2017-1998, 2017. a
Coder, J. G.: Development of a CFD-compatible transition model based on linear stability theory, The Pennsylvania State University, https://etda.libraries.psu.edu/catalog/22627 (last access: 29 March 2024), 2014. a
Cormier, M., Bühler, M., Mauz, M., Lutz, T., Bange, J., and Krämer, E.: CFD Prediction of Tip Vortex Aging in the Wake of a Multi-MW Wind Turbine, J. Phys.: Conf. Ser., 1618, 062029, https://doi.org/10.1088/1742-6596/1618/6/062029, 2020. a, b
Cormier, M., Weihing, P., and Lutz, T.: Evaluation of the Effects of Actuator Line Force Smearing on Wind Turbines Near-Wake Development, J. Phys.: Conf. Ser., 1934, 012013, https://doi.org/10.1088/1742-6596/1934/1/012013, 2021. a, b
Drela, M. and Giles, M. B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils, AIAA J., 25, 1347–1355, 1987. a
Ebert, P. and Wood, D.: The near wake of a model horizontal-axis wind turbine – II. General features of the three-dimensional flowfield, Renew. Energy, 18, 513–534, 1999. a
Ehrle, M., Romblad, J., Waldmann, A., Weihing, P., Lutz, T., and Krämer, E.: Experimental and Numerical Investigation of Stall on the NACA 64 (3)–418 Airfoil, AIAA J., 60, 6594–6608, 2022. a
Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S., Højstrup, J., and Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms, Wind Energy, 9, 39–53, 2006. a
Fuchs, M. and Mockett, C.: The Importance of Boundary Layer Shielding in DES of Complex Flows, in: 4th German OpenFOAM User Meeting (GOFUN) https://www.foamacademy.com/wp-content/uploads/2020/05/UCFD_GOFUN_BLShieldingInDES_20200422.pdf (last access: 29 March 2024), 2020. a
Grant, I. and Parkin, P.: A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw, Exp. Fluids, 28, 368–376, 2000. a
Grasso, F., van Garrel, A., and Schepers, G.: Development and validation of generalized lifting line based code for wind turbine aerodynamics, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 4–7 January 2011, Orlando, Florida, USA, p. 146, https://doi.org/10.2514/6.2011-146, 2011. a
Herráez, I., Akay, B., van Bussel, G. J. W., Peinke, J., and Stoevesandt, B.: Detailed analysis of the blade root flow of a horizontal axis wind turbine, Wind Energ. Sci., 1, 89–100, https://doi.org/10.5194/wes-1-89-2016, 2016. a
Hodgson, E. L., Grinderslev, C., Meyer Forsting, A. R., Troldborg, N., Sørensen, N. N., Sørensen, J. N., and Andersen, S. J.: Validation of Aeroelastic Actuator Line for Wind Turbine Modelling in Complex Flows, Front. Energ. Res., 10, 604, https://doi.org/10.3389/fenrg.2022.864645, 2022. a
Ivanell, S., Mikkelsen, R., Sørensen, J. N., and Henningson, D.: Stability analysis of the tip vortices of a wind turbine, Wind Energy, 13, 705–715, 2010. a
Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA J., 1596, 1991, https://doi.org/10.2514/6.1991-1596, 1991. a
Jameson, A., Schmidt, W., and Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, in: 14th fluid and plasma dynamics conference, 23–25 June 1981, Palo Alto, CA, USA, p. 1259, https://doi.org/10.2514/6.1981-1259, 1981. a
Jensen, N. O.: A note on wind generator interaction, in: vol. 2411, Citeseer, ISBN 87-550-0971-9, 1983. a
Jiang, G.-S. and Shu, C.-W.: Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202–228, 1996. a
Jost, E., Klein, L., Leipprand, H., Lutz, T., and Krämer, E.: Extracting the angle of attack on rotor blades from CFD simulations, Wind Energy, 21, 807–822, https://doi.org/10.1002/we.2196, 2018. a, b
Kleine, V. G., Franceschini, L., Carmo, B. S., Hanifi, A., and Henningson, D.: The Stability of Wakes of Floating Wind Turbines, Phys. Fluids, 34, 074106, https://doi.org/10.1063/5.0092267, 2022. a
Kowarsch, U., Keßler, M., and Krämer, E.: High order CFD-simulation of the rotor-fuselage interaction, https://dspace-erf.nlr.nl/items/22ea3fc4-c691-4b58-889c-7c423e7726a3 (last access: 29 March 2024), 2013. a
Kroll, N., Rossow, C.-C., Becker, K., and Thiele, F.: The MEGAFLOW project, Aerosp. Sci. Technol., 4, 223–237, 2000. a
Larsen, G. C., Aagaard Madsen, H., and Bingöl, F.: Dynamic wake meandering modeling, DTU, ISBN 978-87-550-3602-4, URL: https://orbit.dtu.dk/en/publications/dynamic-wake-meandering-modeling (last access: 29 March 2024), 2007. a
Leishman, J. G. and Beddoes, T.: A Semi-Empirical model for dynamic stall, J. Am. Helicopt. Soc., 34, 3–17, 1989. a
Li, L., Xu, C., Shi, C., Han, X., and Shen, W.: Investigation of wake characteristics of the MEXICO wind turbine using lattice Boltzmann method, Wind Energy, 24, 116–132, 2021. a
Lutz, T., Meister, K., and Krämer, E.: Near wake studies of the mexico rotor, in: Proceedings of the EWEC conference, 14–17 March 2011, WindEurope, Brussels, Belguim, 161–165, ISBN 9781618399915, 2011. a
Martín, M. P., Taylor, E. M., Wu, M., and Weirs, V. G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence, J. Comput. Phys., 220, 270–289, 2006. a
Matyushenko, A. A. and Garbaruk, A. V.: Adjustment of the k–ω SST turbulence model for prediction of airfoil characteristics near stall, J. Phys.: Conf. Ser., 769, 012082, https://doi.org/10.1088/1742-6596/769/1/012082, 2016. a
Meister, K., Lutz, T., and Krämer, E.: Desciption of a vortex evaluation macro for Tecplot, Tech. rep., Institute of aerodynamics and gas dynamics, University of Stuttgart, 2011. a
Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598–1605, 1994. a
Menter, F. R., Smirnov, P. E., Liu, T., and Avancha, R.: A one-equation local correlation-based transition model, Flow Turbul. Combust., 95, 583–619, 2015. a
Micallef, D.: 3D flows near a HAWT rotor: A dissection of blade and wake contributions, PhD thesis, Technical University of Delft, Delft, ISBN 9789995703134, https://research.tudelft.nl/en/publications/3d-flows-near-a-hawt-rotor-a-dissection-of-blade-and-wake (last access: 29 March 2024), 2012. a, b, c
Micallef, D., Akay, B., Ferreira, C. S., Sant, T., and van Bussel, G.: The origins of a wind turbine tip vortex, J. Phys.: Conf. Ser., 555, 012074, https://doi.org/10.1088/1742-6596/555/1/012074, 2014. a
Mikkelsen, R.: Actuator disc methods applied to wind turbines, PhD thesis, Technical University of Denmark, ISBN 87-7475-296-0, https://orbit.dtu.dk/en/publications/actuator-disc-methods-applied-to-wind-turbines (last access: 29 March 2024), 2003. a
Mockett, C.: A Comprehensive Study of Detached Eddy Simulation, PhD thesis, Teschnische Universität Berlin, https://doi.org/10.14279/depositonce-2305, 2009. a
Mühle, F., Schottler, J., Bartl, J., Futrzynski, R., Evans, S., Bernini, L., Schito, P., Draper, M., Guggeri, A., Kleusberg, E., Henningson, D. S., Höling, M., Peinke, J., Adaramola, M. S., and Sætran, L.: Blind test comparison on the wake behind a yawed wind turbine, Wind Energ Sci., 3, 883–903, https://doi.org/10.5194/wes-3-883-2018, 2018. a, b, c
Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., and Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids, 23, 085106, https://doi.org/10.1063/1.3623274, 2011. a
Okulov, V. and Sørensen, J. N.: Stability of helical tip vortices in a rotor far wake, J. Fluid Mech., 576, 1–25, 2007. a
Parra, E. A.: Data Reduction and Analysis of the New MEXICO Experiment, Tech. rep. ECN-WIND-2015-189, ECN, 2016. a
Philipsen, I., Heinrich, S., Pengel, K., and Holthusen, H.: LLF-2015-19 Test report for measurements on the Mexico wind turbine model in DNW-LLF, Tech. rep., DNW Company, 2014. a
Réthoré, P.-E., Sørensen, N., Zahle, F., Bechmann, A., and Madsen, H.: MEXICO wind tunnel and wind turbine modelled in CFD, in: 29th AIAA Applied Aerodynamics Conference, 27–30 June 2011, Honolulu, Hawaii, p. 3373, https://doi.org/10.2514/6.2011-3373, 2011. a
Rieper, F.: A low-Mach number fix for Roe's approximate Riemann solver, J. Comput. Phys., 230, 5263–5287, 2011. a
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S., Sørensen, J. N., and Henningson, D. S.: Mutual inductance instability of the tip vortices behind a wind turbine, J. Fluid Mech., 755, 705–731, 2014. a
Sarmast, S., Shen, W. Z., Zhu, W. J., Mikkelsen, R. F., Breton, S.-P., and Ivanell, S.: Validation of the actuator line and disc techniques using the New MEXICO measurements, J. Phys.: Conf. Ser., 753, 032026, https://doi.org/10.1088/1742-6596/753/3/032026, 2016. a
Schepers, J. G., Boorsma, K., Cho, T., Gomez-Iradi, S., Schaffarczyk, P., Jeromin, A., Shen, W. Z., Lutz, T., Meister, K., Stoevesandt, B., Schreck, S., Micallef, D., Pereira, R., Sant, T., Madsen, H., and Sorensen, N.: Final report of IEA task 29, Mexnet (phase 1): analysis of Mexico wind tunnel measurements, IEA, https://publications.ecn.nl/ECN-E--12-004 (last access: 29 March 2024), 2012. a, b
Schulz, C., Meister, K., Lutz, T., and Krämer, E.: Investigations on the Wake Development of the MEXICO Rotor Considering Different Inflow Conditions, in: New Results in Numerical and Experimental Fluid Mechanics X, edited by: Dillmann, A., Heller, G., Krämer, E., Wagner, C., and Breitsamter, C., Springer International Publishing, Cham, 871–882, ISBN 978-3-319-27279-5, 2016. a, b, c, d
Sherry, M., Sheridan, J., and Jacono, D. L.: Characterisation of a horizontal axis wind turbine's tip and root vortices, Exp. Fluids, 54, 1–19, 2013. a
Snel, H., Schepers, J. G., and Montgomerie, B.: The MEXICO project (Model Experiments in Controlled Conditions): The database and first results of data processing and interpretation, J. Phys.: Conf. Ser., 75, 012014, https://doi.org/10.1088/1742-6596/75/1/012014, 2007. a, b
Sørensen, N. N., Zahle, F., Boorsma, K., and Schepers, G.: CFD computations of the second round of MEXICO rotor measurements, J. Phys.: Conf. Ser., 753, 022054, https://doi.org/10.1088/1742-6596/753/2/022054, 2016. a
Soto-Valle, R., Cioni, S., Bartholomay, S., Manolesos, M., Nayeri, C. N., Bianchini, A., and Paschereit, C. O.: Vortex identification methods applied to wind turbine tip vortices, Wind Energ. Sci., 7, 585–602, https://doi.org/10.5194/wes-7-585-2022, 2022. a
Spalart, P. R.: Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach, in: Proceedings of the First AFOSR International Conference on DNS/LES, 4–8 August 1997, Louisiana Tech University, Ruston, Louisiana, USA, 137–147, ISBN 1570743657, 1997. a
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., and Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theore. Comput. Fluid Dynam., 20, 181–195, 2006. a
Tomaszewski, J. M., Lundquist, J. K., Churchfield, M. J., and Moriarty, P. J.: Do wind turbines pose roll hazards to light aircraft?, Wind Energ. Sci., 3, 833–843, https://doi.org/10.5194/wes-3-833-2018, 2018. a
Troldborg, N., Zahle, F., Réthoré, P.-E., and Sørensen, N. N.: Comparison of wind turbine wake properties in non-sheared inflow predicted by different computational fluid dynamics rotor models, Wind Energy, 18, 1239–1250, https://doi.org/10.1002/we.1757, 2015. a, b
Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld, B., Wahls, R. A., Morrison, J. H., Zickuhr, T., Laflin, K. R., and Mavriplis, D. J.: A bridged summary of the third AIAA computational fluid dynamics drag prediction workshop, J. Aircraft, 45, 781–798, 2008. a
Vollmers, H.: Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data, Meas. Sci. Technol., 12, 1199, https://doi.org/10.1088/0957-0233/12/8/329, 2001. a
Wang, C., Campagnolo, F., Canet, H., Barreiro, D. J., and Bottasso, C. L.: How realistic are the wakes of scaled wind turbine models?, Wind Energ. Sci., 6, 961–981, https://doi.org/10.5194/wes-6-961-2021, 2021. a, b
Weihing, P., Letzgus, J., Bangga, G., Lutz, T., and Krämer, E.: Hybrid RANS/LES capabilities of the flow solver FLOWer – Application to flow around wind turbines, in: Symposium on hybrid RANS-LES methods, Springer, 369–380, https://doi.org/10.1007/978-3-319-70031-1, 2016. a, b
Weihing, P., Schulz, C., Lutz, T., and Krämer, E.: Comparison of the Actuator Line Model with Fully Resolved Simulations in Complex Environmental Conditions, J. Phys.: Conf. Ser., 854, 012049, https://doi.org/10.1088/1742-6596/854/1/012049, 2017. a, b
Weihing, P., Wegmann, T., Lutz, T., Krämer, E., Kühn, T., and Altmikus, A.: Numerical analyses and optimizations on the flow in the nacelle region of a wind turbine, Wind Energ. Sci., 3, 503–531, https://doi.org/10.5194/wes-3-503-2018, 2018. a
Weihing, P., Letzgus, J., Lutz, T., and Krämer, E.: Development of alternative shielding functions for detached-eddy simulations, in: Progress in Hybrid RANS-LES Modelling, Springer, 109–118, https://doi.org/10.1007/978-3-030-27607-2, 2020. a, b, c
Short summary
This study evaluates different approaches to simulate the near-wake flow of a wind turbine. The test case is in off-design conditions of the wind turbine, where the flow is separated from the blades and therefore very difficult to predict. The evaluation of simulation techniques is key to understand their limitations and to deepen the understanding of the near-wake physics. This knowledge can help to derive new wind farm design methods for yield-optimized farm layouts.
This study evaluates different approaches to simulate the near-wake flow of a wind turbine. The...
Altmetrics
Final-revised paper
Preprint