Articles | Volume 4, issue 4
Wind Energ. Sci., 4, 677–692, 2019
https://doi.org/10.5194/wes-4-677-2019
Wind Energ. Sci., 4, 677–692, 2019
https://doi.org/10.5194/wes-4-677-2019
Research article
18 Dec 2019
Research article | 18 Dec 2019

Uncertainty identification of blade-mounted lidar-based inflow wind speed measurements for robust feedback–feedforward control synthesis

Róbert Ungurán et al.

Related authors

Evaluation of low-level jets in the Southern Baltic Sea: a comparison between ship-based lidar observational data and numerical models
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-40,https://doi.org/10.5194/wes-2022-40, 2022
Preprint under review for WES
Short summary
Observer-based power forecast of individual and aggregated offshore wind turbines
Frauke Theuer, Andreas Rott, Jörge Schneemann, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-31,https://doi.org/10.5194/wes-2022-31, 2022
Preprint under review for WES
Short summary
Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems
Paul Veers, Carlo Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Athanasios Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-32,https://doi.org/10.5194/wes-2022-32, 2022
Preprint under review for WES
Short summary
Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022,https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
FarmConners Wind Farm Flow Control Benchmark: Blind Test Results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Ju Feng, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit Dighe, Marcus Becker, Maarten van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Frédéric Blondel, Ishaan Sood, and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-5,https://doi.org/10.5194/wes-2022-5, 2022
Preprint under review for WES
Short summary

Related subject area

Control and system identification
Load reduction for wind turbines: an output-constrained, subspace predictive repetitive control approach
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022,https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
A reference open-source controller for fixed and floating offshore wind turbines
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022,https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Model-based design of a wave-feedforward control strategy in floating wind turbines
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021,https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary

Cited articles

Barlas, T. K., van Wingerden, J.-W., Hulskamp, A. W., van Kuik, G. A. M., and Bersee, H. E. N.: Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements, Wind Energy, 16, 1287–1301, https://doi.org/10.1002/we.1560, 2013. a
Berg, J. C., Resor, B. R., Paquette, J. A., and White, J. R.: SMART wind turbine rotor. Design and field test, Tech. rep., Sandia National Laboratories, Sandia National Laboratories, Albuquerque, New Mexico, USA, available at: https://www.energy.gov/sites/prod/files/2014/03/f14/smart_wind_turbine_design.pdf (last access: 29 November 2019), 2014. a
Bergami, L. and Poulsen, N. K.: A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation, Wind Energy, 18, 625–641, https://doi.org/10.1002/we.1716, 2015. a
Bossanyi, E. A.: Individual blade pitch control for load reduction, Wind Energy, 6, 119–128, https://doi.org/10.1002/we.76, 2003. a, b, c
Bossanyi, E. A.: Further load reductions with individual pitch control, Wind Energy, 8, 481–485, https://doi.org/10.1002/we.166, 2005. a
Download
Short summary
A novel lidar-based sensory system for wind turbine control is proposed. The main contributions are the parametrization method of the novel measurement system, the identification of possible sources of measurement uncertainty, and their modelling. Although not the focus of the submitted paper, the mentioned contributions represent essential building blocks for robust feedback–feedforward wind turbine control development which could be used to improve wind turbine control strategies.