Articles | Volume 6, issue 6
https://doi.org/10.5194/wes-6-1427-2021
https://doi.org/10.5194/wes-6-1427-2021
Research article
 | 
12 Nov 2021
Research article |  | 12 Nov 2021

Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance

Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc

Related authors

Biases in preconstruction estimates of wind plant annul energy production
Rob Hammond and Eric Simley
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-127,https://doi.org/10.5194/wes-2025-127, 2025
Preprint under review for WES
Short summary
Comparison of wind-farm control strategies under realistic offshore wind conditions: wake quantities of interest
Kenneth Brown, Gopal Yalla, Lawrence Cheung, Joeri Frederik, Dan Houck, Nathaniel deVelder, Eric Simley, and Paul Fleming
Wind Energ. Sci., 10, 1737–1762, https://doi.org/10.5194/wes-10-1737-2025,https://doi.org/10.5194/wes-10-1737-2025, 2025
Short summary
Comparison of wind farm control strategies under realistic offshore wind conditions: turbine quantities of interest
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025,https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
The value of wake steering wind farm flow control in US energy markets
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024,https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Increased power gains from wake steering control using preview wind direction information
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023,https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary

Cited articles

Adaramola, M. S. and Krogstad, P. Å.: Experimental investigation of wake effects on wind turbine performance, Renew. Energ., 36, 2078–2086, 2011. a
Ahmad, T., Coupiac, O., Petit, A., Guignard, S., Girard, N., Kazemtabrizi, B., and Matthews, P.: Field Implementation and Trial of Coordinated Control of Wind Farms, IEEE T. Sustain. Energ., 9, 1169–1176, https://doi.org/10.1109/TSTE.2017.2774508, 2017. a
Annoni, J., Bay, C., Johnson, K., Dall'Anese, E., Quon, E., Kemper, T., and Fleming, P.: Wind direction estimation using SCADA data with consensus-based optimization, Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, 2019. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, 2014. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a
Download
Short summary
Wake steering is a wind farm control strategy in which upstream wind turbines are misaligned with the wind to deflect their low-velocity wakes away from downstream turbines, increasing overall power production. Here, we present results from a two-turbine wake-steering experiment at a commercial wind plant. By analyzing the wind speed dependence of wake steering, we find that the energy gained tends to increase for higher wind speeds because of both the wind conditions and turbine operation.
Share
Altmetrics
Final-revised paper
Preprint