Articles | Volume 6, issue 3
https://doi.org/10.5194/wes-6-737-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-737-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell
CORRESPONDING AUTHOR
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Jennifer King
CORRESPONDING AUTHOR
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Caroline Draxl
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Rafael Mudafort
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Nicholas Hamilton
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Christopher J. Bay
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Paul Fleming
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Eric Simley
National Renewable Energy Laboratory, Golden, CO, 80401, USA
Related authors
No articles found.
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-148, https://doi.org/10.5194/wes-2024-148, 2024
Preprint under review for WES
Short summary
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation, and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
Mark O'Malley, Hannele Holttinen, Nicolaos Cutululis, Til Kristian Vrana, Jennifer King, Vahan Gevorgian, Xiongfei Wang, Fatemeh Rajaei-Najafabadi, and Andreas Hadjileonidas
Wind Energ. Sci., 9, 2087–2112, https://doi.org/10.5194/wes-9-2087-2024, https://doi.org/10.5194/wes-9-2087-2024, 2024
Short summary
Short summary
The rising share of wind power poses challenges to cost-effective integration while ensuring reliability. Balancing the needs of the power system and contributions of wind power is crucial for long-term value. Research should prioritize wind power advantages over competitors, focussing on internal challenges. Collaboration with other technologies is essential for addressing the fundamental objectives of power systems – maintaining reliable supply–demand balance at the lowest cost.
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, and Ethan Young
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-115, https://doi.org/10.5194/wes-2024-115, 2024
Preprint under review for WES
Short summary
Short summary
Three recent wind resource datasets are assessed for their skills in representing annual average wind speeds and seasonal, diurnal, and inter-annual trends in the wind resource to support customers interested in small and midsize wind energy.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Raghavendra Krishnamurthy, Rob Newsom, Colleen Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna M. Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-29, https://doi.org/10.5194/wes-2024-29, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The growth of wind farms in the central United States in the last decade has been staggering. This study looked at how wind farms affect the recovery of wind wakes – the disturbed air behind wind turbines. In places like the US Great Plains, phenomena such as low-level jets can form, changing how wind farms work. We studied how wind wakes recover under different weather conditions using real-world data, which is important for making wind energy more efficient and reliable.
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024, https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Short summary
Wake steering is a wind farm control technology in which turbines are misaligned with the wind to deflect their wakes away from downstream turbines, increasing total power production. In this paper, we use a wind farm control model and historical electricity prices to assess the potential increase in market value from wake steering for 15 US wind plants. For most plants, we find that the relative increase in revenue from wake steering exceeds the relative increase in energy production.
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-6, https://doi.org/10.5194/wes-2024-6, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This work investigates asymmetries in terms of power performance and fatigue loading on a 5-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintenance good power gains and show that partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Andrew P. J. Stanley, Christopher J. Bay, and Paul Fleming
Wind Energ. Sci., 8, 1341–1350, https://doi.org/10.5194/wes-8-1341-2023, https://doi.org/10.5194/wes-8-1341-2023, 2023
Short summary
Short summary
Better wind farms can be built by simultaneously optimizing turbine locations and control, which is currently impossible or extremely challenging because of the size of the problem. The authors present a method to determine optimal wind farm control as a function of the turbine locations, which enables turbine layout and control to be optimized together by drastically reducing the size of the problem. In an example, a wind farm's performance improves by 0.8 % when optimized with the new method.
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023, https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Short summary
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy. It also points to code, assessment tools, and data for testing the methods.
Jared J. Thomas, Nicholas F. Baker, Paul Malisani, Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, John Jasa, Christopher Bay, Federico Tilli, David Bieniek, Nick Robinson, Andrew P. J. Stanley, Wesley Holt, and Andrew Ning
Wind Energ. Sci., 8, 865–891, https://doi.org/10.5194/wes-8-865-2023, https://doi.org/10.5194/wes-8-865-2023, 2023
Short summary
Short summary
This work compares eight optimization algorithms (including gradient-based, gradient-free, and hybrid) on a wind farm optimization problem with 4 discrete regions, concave boundaries, and 81 wind turbines. Algorithms were each run by researchers experienced with that algorithm. Optimized layouts were unique but with similar annual energy production. Common characteristics included tightly-spaced turbines on the outer perimeter and turbines loosely spaced and roughly on a grid in the interior.
Ryan Scott, Luis Martínez-Tossas, Juliaan Bossuyt, Nicholas Hamilton, and Raúl B. Cal
Wind Energ. Sci., 8, 449–463, https://doi.org/10.5194/wes-8-449-2023, https://doi.org/10.5194/wes-8-449-2023, 2023
Short summary
Short summary
In this work we examine the relationship between wind speed and turbulent stresses within a wind turbine wake. This relationship changes further from the turbine as the driving physical phenomena vary throughout the wake. We propose a model for this process and test the effectiveness of our model against existing formulations. Our approach increases the accuracy of wind speed predictions, which will lead to better estimates of wind plant performance and promote more efficient wind plant design.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Stephanie Redfern, Mike Optis, Geng Xia, and Caroline Draxl
Wind Energ. Sci., 8, 1–23, https://doi.org/10.5194/wes-8-1-2023, https://doi.org/10.5194/wes-8-1-2023, 2023
Short summary
Short summary
As wind farm developments expand offshore, accurate forecasting of winds above coastal waters is rising in importance. Weather models rely on various inputs to generate their forecasts, one of which is sea surface temperature (SST). In this study, we evaluate how the SST data set used in the Weather Research and Forecasting model may influence wind characterization and find meaningful differences between model output when different SST products are used.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022, https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
Short summary
This work introduces the FLOW Estimation and Rose Superposition (FLOWERS) wind turbine wake model. This model analytically integrates the wake over wind directions to provide a time-averaged flow field. This new formulation is used to perform layout optimization. The FLOWERS model provides a smooth flow field over an entire wind plant at fraction of the computational cost of the standard numerical integration approach.
Geng Xia, Caroline Draxl, Michael Optis, and Stephanie Redfern
Wind Energ. Sci., 7, 815–829, https://doi.org/10.5194/wes-7-815-2022, https://doi.org/10.5194/wes-7-815-2022, 2022
Short summary
Short summary
In this study, we propose a new method to detect sea breeze events from the Weather Research and Forecasting simulation. Our results suggest that the method can identify the three different types of sea breezes in the model simulation. In addition, the coastal impact, seasonal distribution and offshore wind potential associated with each type of sea breeze differ significantly, highlighting the importance of identifying the correct type of sea breeze in numerical weather/wind energy forecasting.
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022, https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
Short summary
In wind plants, turbines can be yawed to steer their wakes away from downstream turbines and achieve an increase in plant power. The yaw angles become expensive to solve for in large farms. This paper presents a new method to solve for the optimal turbine yaw angles in a wind plant. The yaw angles are defined as Boolean variables – each turbine is either yawed or nonyawed. With this formulation, most of the gains from wake steering can be reached with a large reduction in computational expense.
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022, https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Short summary
Hybrid solar and wind plant layout optimization is a difficult, complex problem. In this paper, we propose a parameterized approach to wind and solar hybrid power plant layout optimization that greatly reduces problem dimensionality while guaranteeing that the generated layouts have a desirable regular structure. We demonstrate that this layout method that generates high-performance, regular layouts which respect hard constraints (e.g., placement restrictions).
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Jared J. Thomas, Christopher J. Bay, Andrew P. J. Stanley, and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-4, https://doi.org/10.5194/wes-2022-4, 2022
Revised manuscript not accepted
Short summary
Short summary
We wanted to determine if and how optimization algorithms may be exploiting inaccuracies in the simple models used for wind farm layout optimization. Comparing optimization results from a simple model to large-eddy simulations showed that even a simple model provides enough information for optimizers to find good layouts. However, varying the number of wind directions in the optimization showed that the wind resource discretization can negatively impact the optimization results.
Andrew P. J. Stanley, Jennifer King, Christopher Bay, and Andrew Ning
Wind Energ. Sci., 7, 433–454, https://doi.org/10.5194/wes-7-433-2022, https://doi.org/10.5194/wes-7-433-2022, 2022
Short summary
Short summary
In this paper, we present a computationally inexpensive model to calculate wind turbine blade fatigue caused by waking and partial waking. The model accounts for steady state on the blade, as well as wind turbulence. The model is fast enough to be used in wind farm layout optimization, which has not been possible with more expensive fatigue models in the past. The methods introduced in this paper will allow for farms with increased energy production that maintain turbine structural reliability.
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Short summary
The paper presents a new validation campaign of wake steering at a commercial wind farm. The campaign uses fixed yaw offset positions, rather than a table of optimal yaw offsets dependent on wind direction, to enable comparison with engineering models of wake steering. Additionally, by applying the same offset in beneficial and detrimental conditions, we are able to collect important data for assessing second-order wake model predictions.
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021, https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021, https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Short summary
Wake steering is a wind farm control strategy in which upstream wind turbines are misaligned with the wind to deflect their low-velocity wakes away from downstream turbines, increasing overall power production. Here, we present results from a two-turbine wake-steering experiment at a commercial wind plant. By analyzing the wind speed dependence of wake steering, we find that the energy gained tends to increase for higher wind speeds because of both the wind conditions and turbine operation.
Andrew P. J. Stanley, Owen Roberts, Jennifer King, and Christopher J. Bay
Wind Energ. Sci., 6, 1143–1167, https://doi.org/10.5194/wes-6-1143-2021, https://doi.org/10.5194/wes-6-1143-2021, 2021
Short summary
Short summary
Wind farm layout optimization is an essential part of wind farm design. In this paper, we present different methods to determine the number of turbines in a wind farm, as well as their placement. Also in this paper we explore the effect that the objective function has on the wind farm design and found that wind farm layout is highly sensitive to the objective. The optimal number of turbines can vary greatly, from 15 to 54 for the cases in this paper, depending on the metric that is optimized.
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021, https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Short summary
This paper highlights the secondary effects of wake steering, including yaw-added wake recovery and secondary steering. These effects enhance the value of wake steering especially when applied to a large wind farm. This paper models these secondary effects using an analytical model proposed in the paper. The results of this model are compared with large-eddy simulations for several cases including 2-turbine, 3-turbine, 5-turbine, and 38-turbine cases.
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Caroline Draxl, Rochelle P. Worsnop, Geng Xia, Yelena Pichugina, Duli Chand, Julie K. Lundquist, Justin Sharp, Garrett Wedam, James M. Wilczak, and Larry K. Berg
Wind Energ. Sci., 6, 45–60, https://doi.org/10.5194/wes-6-45-2021, https://doi.org/10.5194/wes-6-45-2021, 2021
Short summary
Short summary
Mountain waves can create oscillations in low-level wind speeds and subsequently in the power output of wind plants. We document such oscillations by analyzing sodar and lidar observations, nacelle wind speeds, power observations, and Weather Research and Forecasting model simulations. This research describes how mountain waves form in the Columbia River basin and affect wind energy production and their impact on operational forecasting, wind plant layout, and integration of power into the grid.
Peter Brugger, Mithu Debnath, Andrew Scholbrock, Paul Fleming, Patrick Moriarty, Eric Simley, David Jager, Jason Roadman, Mark Murphy, Haohua Zong, and Fernando Porté-Agel
Wind Energ. Sci., 5, 1253–1272, https://doi.org/10.5194/wes-5-1253-2020, https://doi.org/10.5194/wes-5-1253-2020, 2020
Short summary
Short summary
A wind turbine can actively influence its wake by turning the rotor out of the wind direction to deflect the wake away from a downstream wind turbine. This technique was tested in a field experiment at a wind farm, where the inflow and wake were monitored with remote-sensing instruments for the wind speed. The behaviour of the wake deflection agrees with the predictions of two analytical models, and a bias of the wind direction perceived by the yawed wind turbine led to suboptimal power gains.
Tobias Ahsbahs, Galen Maclaurin, Caroline Draxl, Christopher R. Jackson, Frank Monaldo, and Merete Badger
Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020, https://doi.org/10.5194/wes-5-1191-2020, 2020
Short summary
Short summary
Before constructing wind farms we need to know how much energy they will produce. This requires knowledge of long-term wind conditions from either measurements or models. At the US East Coast there are few wind measurements and little experience with offshore wind farms. Therefore, we created a satellite-based high-resolution wind resource map to quantify spatial variations in the wind conditions over potential sites for wind farms and found larger variation than modelling suggested.
Patrick Murphy, Julie K. Lundquist, and Paul Fleming
Wind Energ. Sci., 5, 1169–1190, https://doi.org/10.5194/wes-5-1169-2020, https://doi.org/10.5194/wes-5-1169-2020, 2020
Short summary
Short summary
We present and evaluate an improved method for predicting wind turbine power production based on measurements of the wind speed and direction profile across the rotor disk for a wind turbine in complex terrain. By comparing predictions to actual power production from a utility-scale wind turbine, we show this method is more accurate than methods based on hub-height wind speed or surface-based atmospheric characterization.
Paul Fleming, Jennifer King, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, David Jager, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, https://doi.org/10.5194/wes-5-945-2020, 2020
Short summary
Short summary
This paper presents the results of a field campaign investigating the performance of wake steering applied at a section of a commercial wind farm. It is the second phase of the study for which the first phase was reported in a companion paper (https://wes.copernicus.org/articles/4/273/2019/). The authors implemented wake steering on two turbine pairs and compared results with the latest FLORIS model of wake steering, showing good agreement in overall energy increase.
Eric Simley, Paul Fleming, and Jennifer King
Wind Energ. Sci., 5, 451–468, https://doi.org/10.5194/wes-5-451-2020, https://doi.org/10.5194/wes-5-451-2020, 2020
Short summary
Short summary
Wind farm wake losses occur when turbines operate in the wakes of upstream turbines. However, wake steering control can be used to deflect wakes away from downstream turbines. A method for including wind direction variability in wake steering simulations is presented here. Controller performance is shown to improve when wind direction variability is accounted for. Furthermore, the importance of wind direction variability is shown for different turbine spacings and atmospheric conditions.
Julian Quick, Jennifer King, Ryan N. King, Peter E. Hamlington, and Katherine Dykes
Wind Energ. Sci., 5, 413–426, https://doi.org/10.5194/wes-5-413-2020, https://doi.org/10.5194/wes-5-413-2020, 2020
Short summary
Short summary
We investigate the trade-offs in optimization of wake steering strategies, where upstream turbines are positioned to deflect wakes away from downstream turbines, with a probabilistic perspective. We identify inputs that are sensitive to uncertainty and demonstrate a realistic optimization under uncertainty for a wind power plant control strategy. Designing explicitly around uncertainty yielded control strategies that were generally less aggressive and more robust to the uncertain input.
Nicholas Hamilton
Atmos. Meas. Tech., 13, 1019–1032, https://doi.org/10.5194/amt-13-1019-2020, https://doi.org/10.5194/amt-13-1019-2020, 2020
Short summary
Short summary
The identification of atmospheric conditions within a multivariable atmospheric data set is an important step in validating emerging and existing models used to simulate wind plant flows and operational strategies. The total variation approach developed here offers a method founded in tested mathematical metrics and can be used to identify and characterize periods corresponding to quiescent conditions or specific events of interest for study or wind energy development.
Daniel S. Zalkind, Gavin K. Ananda, Mayank Chetan, Dana P. Martin, Christopher J. Bay, Kathryn E. Johnson, Eric Loth, D. Todd Griffith, Michael S. Selig, and Lucy Y. Pao
Wind Energ. Sci., 4, 595–618, https://doi.org/10.5194/wes-4-595-2019, https://doi.org/10.5194/wes-4-595-2019, 2019
Short summary
Short summary
We present a model that both (1) reduces the computational effort involved in analyzing design trade-offs and (2) provides a qualitative understanding of the root cause of fatigue and extreme structural loads for wind turbine components from the blades to the tower base. We use this model in conjunction with design loads from high-fidelity simulations to analyze and compare the trade-offs between power capture and structural loading for large rotor concepts.
Jennifer Annoni, Christopher Bay, Kathryn Johnson, Emiliano Dall'Anese, Eliot Quon, Travis Kemper, and Paul Fleming
Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, https://doi.org/10.5194/wes-4-355-2019, 2019
Short summary
Short summary
Typically, turbines do not share information with nearby turbines in a wind farm. Relying on a single turbine sensor on the back of a turbine nacelle can lead to large errors in yaw misalignment or excessive yawing due to noisy sensor measurements. The wind farm consensus control approach in this paper shows the benefits of sharing information between nearby turbines by computing a robust estimate of the wind direction using noisy sensor information from these neighboring turbines.
Paul Fleming, Jennifer King, Katherine Dykes, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, Hector Lopez, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, https://doi.org/10.5194/wes-4-273-2019, 2019
Short summary
Short summary
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. For two closely spaced turbines, an approximate 14 % increase in energy was measured on the downstream turbine over a 10° sector, with a 4 % increase in energy production of the combined turbine pair.
Christopher J. Bay, Jennifer King, Paul Fleming, Rafael Mudafort, and Luis A. Martínez-Tossas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-19, https://doi.org/10.5194/wes-2019-19, 2019
Preprint withdrawn
Short summary
Short summary
This work details a new low-fidelity wake model to be used in determining operational strategies for wind turbines. With the additional physics that this model captures, optimizations have found new control strategies that provide greater increases in performance than previously determined, and these performance increases have been confirmed in high-fidelity simulations. As such, this model can be used in the design and optimization of future wind farms and operational schemes.
Mike Optis, Jordan Perr-Sauer, Caleb Philips, Anna E. Craig, Joseph C. Y. Lee, Travis Kemper, Shuangwen Sheng, Eric Simley, Lindy Williams, Monte Lunacek, John Meissner, and M. Jason Fields
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-12, https://doi.org/10.5194/wes-2019-12, 2019
Preprint withdrawn
Short summary
Short summary
As global wind capacity continues to grow, the need for accurate operational analyses of a rapidly growing fleet of wind power plants has increased in proportion. To address this need, the National Renewable Energy Laboratory has released OpenOA, an open-source codebase for operational analysis of wind farms. It is envisioned that OpenOA will evolve into a widely used codebase supported by a large group of global wind energy experts. This paper provides a summary of OpenOA.
Luis A. Martínez-Tossas, Jennifer Annoni, Paul A. Fleming, and Matthew J. Churchfield
Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, https://doi.org/10.5194/wes-4-127-2019, 2019
Short summary
Short summary
A new control-oriented model is developed to compute the wake of a wind turbine under yaw. The model uses a simplified version of the Navier–Stokes equation with assumptions. Good agreement is found between the model-proposed and large eddy simulations of a wind turbine in yaw.
Jennifer Annoni, Paul Fleming, Andrew Scholbrock, Jason Roadman, Scott Dana, Christiane Adcock, Fernando Porte-Agel, Steffen Raach, Florian Haizmann, and David Schlipf
Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, https://doi.org/10.5194/wes-3-819-2018, 2018
Short summary
Short summary
This paper addresses the modeling aspect of wind farm control. To implement successful wind farm controls, a suitable model has to be used that captures the relevant physics. This paper addresses three different wake models that can be used for controls and compares these models with lidar field data from a utility-scale turbine.
Jeffrey D. Mirocha, Matthew J. Churchfield, Domingo Muñoz-Esparza, Raj K. Rai, Yan Feng, Branko Kosović, Sue Ellen Haupt, Barbara Brown, Brandon L. Ennis, Caroline Draxl, Javier Sanz Rodrigo, William J. Shaw, Larry K. Berg, Patrick J. Moriarty, Rodman R. Linn, Veerabhadra R. Kotamarthi, Ramesh Balakrishnan, Joel W. Cline, Michael C. Robinson, and Shreyas Ananthan
Wind Energ. Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018, https://doi.org/10.5194/wes-3-589-2018, 2018
Short summary
Short summary
This paper validates the use of idealized large-eddy simulations with periodic lateral boundary conditions to provide boundary-layer flow quantities of interest for wind energy applications. Sensitivities to model formulation, forcing parameter values, and grid configurations were also examined, both to ascertain the robustness of the technique and to characterize inherent uncertainties, as required for the evaluation of more general wind plant flow simulation approaches under development.
Paul Fleming, Jennifer Annoni, Matthew Churchfield, Luis A. Martinez-Tossas, Kenny Gruchalla, Michael Lawson, and Patrick Moriarty
Wind Energ. Sci., 3, 243–255, https://doi.org/10.5194/wes-3-243-2018, https://doi.org/10.5194/wes-3-243-2018, 2018
Short summary
Short summary
This paper investigates the role of flow structures in wind farm control through yaw misalignment. A pair of counter-rotating vortices is shown to be important in deforming the shape of the wake. Further, we demonstrate that the vortex structures created in wake steering can enable a greater change power generation than currently modeled in control-oriented models. We propose that wind farm controllers can be made more effective if designed to take advantage of these effects.
Rick Damiani, Scott Dana, Jennifer Annoni, Paul Fleming, Jason Roadman, Jeroen van Dam, and Katherine Dykes
Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018, https://doi.org/10.5194/wes-3-173-2018, 2018
Short summary
Short summary
The paper discusses load effects on wind turbines operating under misaligned-flow operations, which is part of a strategy to optimize wind-power-plant power production, where upwind turbines can be rotated off the wind axis to redirect their wakes. Analytical simplification, aeroelastic simulations, and field data from an instrumented turbine are compared and interpreted to provide an informed picture on the loads for various components.
Naseem Ali, Nicholas Hamilton, Dominic DeLucia, and Raúl Bayoán Cal
Wind Energ. Sci., 3, 43–56, https://doi.org/10.5194/wes-3-43-2018, https://doi.org/10.5194/wes-3-43-2018, 2018
Paul Fleming, Jennifer Annoni, Jigar J. Shah, Linpeng Wang, Shreyas Ananthan, Zhijun Zhang, Kyle Hutchings, Peng Wang, Weiguo Chen, and Lin Chen
Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017, https://doi.org/10.5194/wes-2-229-2017, 2017
Short summary
Short summary
In this paper, a field test of wake-steering control is presented. In the campaign, an array of turbines within an operating commercial offshore wind farm have the normal yaw controller modified to implement wake steering according to a yaw control strategy. Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture.
Naseem Ali, Nicholas Hamilton, and Raúl Bayáon Cal
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-23, https://doi.org/10.5194/wes-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
The effect of the density of turbines on the wake recovery is important. However, the impact of the tight spacing is still not fully understood. Here, we used proper orthogonal decomposition tool to analyze this impact. Different streamwise and spanwise spacings are chosen to make this work robust. Thus, the power measurements are also applied to investigate the spacing impact.
Related subject area
Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Large-eddy simulation of airborne wind energy farms
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Evaluation of the global-blockage effect on power performance through simulations and measurements
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Turbulence statistics from three different nacelle lidars
RANS modeling of a single wind turbine wake in the unstable surface layer
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Validation of wind resource and energy production simulations for small wind turbines in the United States
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
The five main influencing factors for lidar errors in complex terrain
Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations
Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions
Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow
Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study
On the measurement of stability parameter over complex mountainous terrain
Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler lidars
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
On turbulence models and lidar measurements for wind turbine control
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Recovery processes in a large offshore wind farm
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
WRF-simulated low-level jets over Iowa: characterization and sensitivity studies
Correlations of power output fluctuations in an offshore wind farm using high-resolution SCADA data
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Evaluation of idealized large-eddy simulations performed with the Weather Research and Forecasting model using turbulence measurements from a 250 m meteorological mast
Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
Offshore wind farm global blockage measured with scanning lidar
Understanding and mitigating the impact of data gaps on offshore wind resource estimates
Investigating the loads and performance of a model horizontal axis wind turbine under reproducible IEC extreme operational conditions
Validation of the dynamic wake meandering model with respect to loads and power production
Method for airborne measurement of the spatial wind speed distribution above complex terrain
Axial induction controller field test at Sedini wind farm
Wake redirection at higher axial induction
An overview of wind-energy-production prediction bias, losses, and uncertainties
Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
Set-point optimization in wind farms to mitigate effects of flow blockage induced by atmospheric gravity waves
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
Computational analysis of high-lift-generating airfoils for diffuser-augmented wind turbines
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022, https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022, https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Short summary
In this work, we study parks of large-scale airborne wind energy systems using a virtual flight simulator. The virtual flight simulator combines numerical techniques from flow simulation and kite control. Using advanced control algorithms, the systems can operate efficiently in the park despite turbulent flow conditions. For the three configurations considered in the study, we observe significant wake effects, reducing the power yield of the parks.
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022, https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Short summary
This research involves studying the flow around the section of a wind turbine blade, albeit at a lower Reynolds number or flow speed, using wall-resolved large-eddy simulations, a form of computer simulation that resolves the important scales of the flow. Among the many interesting results, it is shown that the energy entering the boundary layer around the airfoil or section of the blade is proportional to the square of the incoming flow turbulence intensity.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022, https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Short summary
We described a new automated method to separate the wind turbine wake from the undisturbed flow. The method relies on the wind speed distribution in the measured wind field to select one specific threshold value and split the measurements into wake and background points. The purpose of the method is to reduce the amount of data required – the proposed algorithm does not need precise information on the wind speed or direction and can run on the image instead of the measured data.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022, https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Short summary
Wind turbine wakes are dependent on the atmospheric conditions, and it is therefore important to be able to simulate in various different atmospheric conditions. This paper concerns the specific case of an unstable atmospheric surface layer, which is the lower part of the typical daytime atmospheric boundary layer. A simple flow model is suggested and tested for a range of single-wake scenarios, and it shows promising results for velocity deficit predictions.
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022, https://doi.org/10.5194/wes-7-715-2022, 2022
Short summary
Short summary
In the future there will be very large wind farm clusters in the German Bight. This study investigates how the wind field is affected by these very large wind farms and how much energy can be extracted by the wind turbines. Very large wind farms do not only reduce the wind speed but can also cause a change in wind direction or temperature. The extractable energy per wind turbine is much smaller for large wind farms than for small wind farms due to the reduced wind speed inside the wind farms.
Lindsay M. Sheridan, Caleb Phillips, Alice C. Orrell, Larry K. Berg, Heidi Tinnesand, Raj K. Rai, Sagi Zisman, Dmitry Duplyakin, and Julia E. Flaherty
Wind Energ. Sci., 7, 659–676, https://doi.org/10.5194/wes-7-659-2022, https://doi.org/10.5194/wes-7-659-2022, 2022
Short summary
Short summary
The small wind community relies on simplified wind models and energy production simulation tools to obtain energy generation expectations. We gathered actual wind speed and turbine production data across the US to test the accuracy of models and tools for small wind turbines. This study provides small wind installers and owners with the error metrics and sources of error associated with using models and tools to make performance estimates, empowering them to adjust expectations accordingly.
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022, https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Short summary
Lidar-assisted control of wind turbines requires a wind field generator capable of simulating wind evolution. Out of this need, we extend the Veers method for 3D wind field generation to 4D and propose a two-step Cholesky decomposition approach. Based on this, we develop a 4D wind field generator – evoTurb – coupled with TurbSim and Mann turbulence generator. We further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide practical suggestions.
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Tobias Klaas-Witt and Stefan Emeis
Wind Energ. Sci., 7, 413–431, https://doi.org/10.5194/wes-7-413-2022, https://doi.org/10.5194/wes-7-413-2022, 2022
Short summary
Short summary
Light detection and ranging (lidar) has become a valuable technology to assess the wind resource at hub height of modern wind turbines. However, because of their measurement principle, common lidars suffer from errors at orographically complex, i.e. hilly or mountainous, sites. This study analyses the impact of the five main influencing factors in a non-dimensional, model-based parameter study.
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022, https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
Short summary
Wind turbine wake behavior in hilly terrain depends on various atmospheric conditions. We modeled a wind turbine located on top of a ridge in Portugal during typical nighttime and daytime atmospheric conditions and validated these model results with observational data. During nighttime conditions, the wake deflected downwards following the terrain. During daytime conditions, the wake deflected upwards. These results can provide insight into wind turbine siting and operation in hilly regions.
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Michael F. Howland, Aditya S. Ghate, Jesús Bas Quesada, Juan José Pena Martínez, Wei Zhong, Felipe Palou Larrañaga, Sanjiva K. Lele, and John O. Dabiri
Wind Energ. Sci., 7, 345–365, https://doi.org/10.5194/wes-7-345-2022, https://doi.org/10.5194/wes-7-345-2022, 2022
Short summary
Short summary
Wake steering control, in which turbines are intentionally misaligned with the incident wind, has demonstrated potential to increase wind farm energy. We investigate wake steering control methods in simulations of a wind farm operating in the terrestrial diurnal cycle. We develop a statistical wind direction forecast to improve wake steering in flows with time-varying states. Closed-loop wake steering control increases wind farm energy production, compared to baseline and open-loop control.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022, https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Elena Cantero, Javier Sanz, Fernando Borbón, Daniel Paredes, and Almudena García
Wind Energ. Sci., 7, 221–235, https://doi.org/10.5194/wes-7-221-2022, https://doi.org/10.5194/wes-7-221-2022, 2022
Short summary
Short summary
The impact of atmospheric stability on wind energy is widely demonstrated, so we have to know how to characterise it.
This work based on a meteorological mast located in a complex terrain compares and evaluates different instrument set-ups and methodologies for stability characterisation. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements and practical use in connection with wind energy applications.
Peter Brugger, Corey Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 7, 185–199, https://doi.org/10.5194/wes-7-185-2022, https://doi.org/10.5194/wes-7-185-2022, 2022
Short summary
Short summary
Wind turbines create a wake of reduced wind speeds downstream of the rotor. The wake does not necessarily have a straight, pencil-like shape but can meander similar to a smoke plume. We investigated this wake meandering and observed that the downstream transport velocity is slower than the wind speed contrary to previous assumptions and that the evolution of the atmospheric turbulence over time impacts wake meandering on distances typical for the turbine spacing in wind farms.
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021, https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
Short summary
We validate new high-resolution data set (NORA3) for offshore wind power purposes for the North Sea and the Norwegian Sea. The aim of the validation is to ensure that NORA3 can act as a wind resource data set in the planning phase for future offshore wind power installations in the area of concern. The general conclusion of the validation is that NORA3 is well suited for wind power estimates but gives slightly conservative estimates of the offshore wind metrics.
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021, https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021, https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
Short summary
This study investigates systematic, seasonal biases in the long-term correction of short-term wind measurements (< 1 year). Two popular measure–correlate–predict (MCP) methods yield remarkably different results. Six reanalysis data sets serve as long-term data. Besides experimental results, theoretical findings are presented which link the mechanics of the methods and the properties of the reanalysis data sets to the observations. Finally, recommendations for wind park planners are derived.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021, https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021, https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Short summary
We carry out a probabilistic calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution nacelle-based lidar measurements of the wake flow field. The experimental data were collected from the Scaled Wind Farm Technology (SWiFT) facility in Texas. The analysis includes the velocity deficit, wake-added turbulence, and wake meandering features under various inflow wind and atmospheric-stability conditions.
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021, https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Short summary
Wind turbines extract momentum from atmospheric flow and convert that to electricity. This study explores recovery processes in wind farms that replenish the momentum so that wind farms can continue to function. Experiments with a numerical model show that momentum transport by turbulent eddies from above the wind turbines is the major contributor to recovery except for strong wind conditions and low wind turbine density, where horizontal advection can also play a major role.
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Short summary
As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. We leverage a year of data of two floating lidars to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. We find that almost 100 independent long events occur throughout the year.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021, https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Short summary
Wind farms operate in the atmospheric boundary layer, and their performance is strongly dependent on the atmospheric conditions. We propose a simple model of the atmospheric boundary layer that can be used as an inflow model for wind farm simulations for isolating a number of atmospheric effects – namely, the change in wind direction with height and atmospheric boundary layer depth. In addition, the simple model is shown to be consistent with two similarity theories.
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021, https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary
Short summary
We deal with wake redirection, which is a promising approach designed to mitigate turbine–wake interactions which have a negative impact on the performance and lifetime of wind farms. We show that substantial power gains can be obtained by tilting the rotors of spanwise-periodic wind-turbine arrays in the atmospheric boundary layer (ABL). Optimal relative rotor sizes and spanwise spacings exist, which maximize the global power extracted from the wind.
Alfredo Peña, Branko Kosović, and Jeffrey D. Mirocha
Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, https://doi.org/10.5194/wes-6-645-2021, 2021
Short summary
Short summary
We investigate the ability of a community-open weather model to simulate the turbulent atmosphere by comparison with measurements from a 250 m mast at a flat site in Denmark. We found that within three main atmospheric stability regimes, idealized simulations reproduce closely the characteristics of the observations with regards to the mean wind, direction, turbulent fluxes, and turbulence spectra. Our work provides foundation for the use of the weather model in multiscale real-time simulations.
Christian Grinderslev, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg, and Frederik Zahle
Wind Energ. Sci., 6, 627–643, https://doi.org/10.5194/wes-6-627-2021, https://doi.org/10.5194/wes-6-627-2021, 2021
Short summary
Short summary
This study investigates aero-elasticity of wind turbines present in the turbulent and chaotic wind flow of the lower atmosphere, using fluid–structure interaction simulations. This method combines structural response computations with high-fidelity modeling of the turbulent wind flow, using a novel turbulence model which combines the capabilities of large-eddy simulations for atmospheric flows with improved delayed detached eddy simulations for the separated flow near the rotor.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Kamran Shirzadeh, Horia Hangan, Curran Crawford, and Pooyan Hashemi Tari
Wind Energ. Sci., 6, 477–489, https://doi.org/10.5194/wes-6-477-2021, https://doi.org/10.5194/wes-6-477-2021, 2021
Short summary
Short summary
Wind energy systems work coherently in atmospheric flows which are gusty. This causes highly variable power productions and high fatigue loads on the system, which together hold back further growth of the wind energy market. This study demonstrates an alternative experimental procedure to investigate some extreme wind condition effects on wind turbines based on the IEC standard. This experiment can be improved upon and used to develop new control concepts, mitigating the effect of gusts.
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021, https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary
Short summary
Wind farm sites in complex terrain are subject to local wind phenomena, which are difficult to quantify but have a huge impact on a wind turbine's annual energy production. Therefore, a wind sensor was applied on an unmanned aerial vehicle and validated against stationary wind sensors with good agreement. A measurement over complex terrain showed local deviations from the mean wind speed of approx. ± 30 %, indicating the importance of an extensive site evaluation to reduce investment risk.
Ervin Bossanyi and Renzo Ruisi
Wind Energ. Sci., 6, 389–408, https://doi.org/10.5194/wes-6-389-2021, https://doi.org/10.5194/wes-6-389-2021, 2021
Short summary
Short summary
This paper describes the design and field testing of a controller for reducing wake interactions on a wind farm. Reducing the power of some turbines weakens their wakes, allowing other turbines to produce more power so that the total wind farm power may increase. There have been doubts that this is feasible, but these field tests on a full-scale wind farm indicate that this goal has been achieved, also providing convincing validation of the model used for designing the controller.
Carlo Cossu
Wind Energ. Sci., 6, 377–388, https://doi.org/10.5194/wes-6-377-2021, https://doi.org/10.5194/wes-6-377-2021, 2021
Short summary
Short summary
In this study wake redirection and axial-induction control are combined to mitigate turbine–wake interactions, which have a negative impact on the performance and lifetime of wind farms. The results confirm that substantial power gains are obtained when overinduction is combined with tilt control. More importantly, the approach is extended to the case of yaw control, showing that large power gain enhancements are obtained by means of static overinductive yaw control.
Joseph C. Y. Lee and M. Jason Fields
Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021, https://doi.org/10.5194/wes-6-311-2021, 2021
Short summary
Short summary
This review paper evaluates the energy prediction bias in the wind resource assessment process, and the overprediction bias is decreasing over time. We examine the estimated and observed losses and uncertainties in energy production from the literature, according to the proposed framework in the International Electrotechnical Commission 61400-15 standard. The considerable uncertainties call for further improvements in the prediction methodologies and more observations for validation.
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 6, 295–309, https://doi.org/10.5194/wes-6-295-2021, https://doi.org/10.5194/wes-6-295-2021, 2021
Short summary
Short summary
Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting and is especially useful when combined with other forecasting techniques. This study utilizes a popular machine learning algorithm, random forest, in an attempt to predict the forecasting error of a statistical forecasting model. Various atmospheric characteristics are used as random forest inputs in an effort to discern the most useful atmospheric information for this purpose.
Luca Lanzilao and Johan Meyers
Wind Energ. Sci., 6, 247–271, https://doi.org/10.5194/wes-6-247-2021, https://doi.org/10.5194/wes-6-247-2021, 2021
Short summary
Short summary
This research paper investigates the potential of thrust set-point optimization in large wind farms for mitigating gravity-wave-induced blockage effects for the first time, with the aim of increasing the wind-farm energy extraction. The optimization tool is applied to almost 2000 different atmospheric states. Overall, power gains above 4 % are observed for 77 % of the cases.
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Aniruddha Deepak Paranjape, Anhad Singh Bajaj, Shaheen Thimmaiah Palanganda, Radha Parikh, Raahil Nayak, and Jayakrishnan Radhakrishnan
Wind Energ. Sci., 6, 149–157, https://doi.org/10.5194/wes-6-149-2021, https://doi.org/10.5194/wes-6-149-2021, 2021
Short summary
Short summary
This project is a comparative study that takes into consideration various airfoils from the Selig, NACA, and Eppler families and models them as diffusers of the wind turbine. The efficiency of the diffuser-augmented wind turbine can be enhanced by optimizing the geometry of the diffuser shape. Their subsequent performance trends were then analyzed, and the lower-performing airfoils were systematically eliminated to leave us with an optimum design.
Cited articles
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. a, b, c
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a, b
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H.: The Quickhull Algorithm for Convex Hulls, ACM T. Math. Software, 22, 469–483, https://doi.org/10.1145/235815.235821, 1996. a, b
Bay, C. J., Annoni, J., Martínez-Tossas, L. A., Pao, L. Y., and Johnson, K. E.: Flow Control Leveraging Downwind Rotors for Improved Wind Power Plant Operation, in: 2019 American Control Conference (ACC), IEEE, 10–12 July 2019, Philadelphia, Pennsylvania, USA, 2843–2848, 2019. a
Boersma, S., Doekemeijer, B. M., Gebraad, P. M. O., Fleming, P. A., Annoni, J., Scholbrock, A. K., Frederik, J. A., and van Wingerden, J.: A tutorial on control-oriented modeling and control of wind farms, in: 2017 American Control Conference (ACC), 24–26 May 2017, Seattle, WA, USA, 1–18, https://doi.org/10.23919/ACC.2017.7962923, 2017. a
Brogna, R., Feng, J., Sørensen, J. N., Shen, W. Z., and Porté-Agel, F.: A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain, Appl. Energ., 259, 114189, https://doi.org/10.1016/j.apenergy.2019.114189, 2020. a, b
Chamorro, L. P. and Porté-Agel, F.: Turbulent flow inside and above a wind farm: a wind-tunnel study, Energies, 4, 1916–1936, 2011. a
Clarke, A. D.: A case of shadow flicker/flashing: assessment and solution, Mechanical Engineering Publications Ltd., United Kingdom, available at: http://inis.iaea.org/search/search.aspx?orig_q=RN:23042992 (last access: 2 February 2021), 1991. a
Clifton, A. and Lundquist, J. K.: Data Clustering Reveals Climate Impacts on Local Wind Phenomena, J. Appl. Meteorol. Climatol., 51, 1547–1557, https://doi.org/10.1175/JAMC-D-11-0227.1, 2012. a
Clifton, A. and Wagner, R.: Accounting for the effect of turbulence on wind turbine power curves, J. Phys. Conf. Ser., 524, 012 109, https://doi.org/10.1088/1742-6596/524/1/012109, 2014. a
Crespo, A. and Hernández, J.: Turbulence characteristics in wind-turbine wakes, J. Wind Eng. Ind. Aerod., 61, 71–85, https://doi.org/10.1016/0167-6105(95)00033-X, 1996. a
Dilip, D. and Porté-Agel, F.: Wind Turbine Wake Mitigation through Blade Pitch Offset, Energies, 10, 757, 2017. a
Fleming, P., Gebraad, P., Wingerden, J. W., Lee, S., Churchfield, M., Scholbrock, A., Michalakes, J., Johnson, K., and Moriarty, P.: The SOWFA super-controller: A high-fidelity tool for evaluating wind plant control approaches, European Wind Energy Conference and Exhibition, EWEC 2013, 3, 1561–1570, available at: https://www.osti.gov/biblio/1068611 (last access: 2 February 2021), 2013. a, b
Fleming, P., Annoni, J., Scholbrock, A., Quon, E., Dana, S., Schreck, S., Raach, S., Haizmann, F., and Schlipf, D.: Full-Scale Field Test of Wake Steering, in: Wake Conference, Visby, Sweden, 2017a. a
Fleming, P., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z., Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of wake steering at an offshore wind farm, Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017, 2017b. a
Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a, b
Fleming, P., King, J., Bay, C. J., Simley, E., Mudafort, R., Hamilton, N., Farrell, A., and Martinez-Tossas, L.: Overview of FLORIS updates, J. Phys. Conf. Ser., 1618, 022 028, https://doi.org/10.1088/1742-6596/1618/2/022028, 2020a. a, b
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020b. a, b
Floater, M. S.: Generalized barycentric coordinates and applications, Acta Numer., 24, 161–214, https://doi.org/10.1017/S0962492914000129, 2015. a
Github: NREL/SOWFA, available at: https://github.com/NREL/SOWFA, last access: 2 February 2021. a
Hamilton, N., Bay, C. J., Fleming, P., King, J., and Martínez-Tossas, L. A.: Comparison of modular analytical wake models to the Lillgrund wind plant, J. Renew. Sustain. Ener., 12, 053 311, https://doi.org/10.1063/5.0018695, 2020. a
Hedevang, E.: Wind turbine power curves incorporating turbulence intensity, Wind Energ., 17, 173–195, https://doi.org/10.1002/we.1566, 2014. a
Howland, M. F., Ghate, A. S., Lele, S. K., and Dabiri, J. O.: Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions, Wind Energ. Sci., 5, 1315–1338, https://doi.org/10.5194/wes-5-1315-2020, 2020. a
Jensen, N. O.: A note on wind generator interaction, Tech. Rep., Risø-M-2411, Risø, 1983. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Office of Scientific and Technical Information (OSTI), USA, https://doi.org/10.2172/947422, 2009. a
Jonkman, J. M. and Buhl Jr., M.: LFAST User's Guide – Updated August 2005 USA, https://doi.org/10.2172/15020796, 2005. a
King, J., Fleming, P., King, R., Martínez-Tossas, L. A., Bay, C. J., Mudafort, R., and Simley, E.: Controls-Oriented Model for Secondary Effects of Wake Steering, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2020-3, in review, 2020a. a
King, J., Fleming, P., King, R., Martínez-Tossas, L. A., Bay, C. J., Mudafort, R., and Simley, E.: Controls-Oriented Model for Secondary Effects of Wake Steering, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2020-3, in review, 2020b. a
Leloudas, G., Zhu, W. J., Sørensen, J. N., Shen, W. Z., and Hjort, S.: Prediction and Reduction of Noise from a 2.3 MW Wind Turbine, J. Phys. Conf. Ser., 75, 012 083, https://doi.org/10.1088/1742-6596/75/1/012083, 2007. a
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a
Mudafort, R. M., Fleming, P., Bay, C. J., Simley, E., Hamilton, N., Bachant, P., Fleming, K., King, J., Quon, E., Stanley, P. J., Hammond, R., Doekemeijer, B., Bensason, D., Schreiber, J., Seim, K. S., Sortland, S., Martinez, T., Farrell, A., and Zerweck: NREL/floris: v2.3 (Version v2.3), Zenodo, https://doi.org/10.5281/zenodo.4730981, 2021. a
Ning, S.: CCBlade Documentation: Release 0.1. 0, Tech. Rep., National Renewable Energy Lab. (NREL), Golden, CO, USA, 2013. a
Schreiber, J., Bottasso, C. L., Salbert, B., and Campagnolo, F.: Improving wind farm flow models by learning from operational data, Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, 2020. a
Shao, Z., Wu, Y., Li, L., Han, S. J., and Liu, Y.: Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes, Energies, 12, 680, https://doi.org/10.3390/en12040680, 2019. a
Shapiro, C. R., Starke, G. M., Meneveau, C., and Gayme, D. F.: A Wake Modeling Paradigm for Wind Farm Design and Control, Energies, 12, 2956, https://doi.org/10.3390/en12152956, 2019. a
Sheinman, Y. and Rosen, A.: A dynamic model of the influence of turbulence on the power output of a wind turbine, J. Wind Eng. Ind. Aerod., 39, 329–341, https://doi.org/10.1016/0167-6105(92)90557-Q, 1992. a
Shewchuk, J. R.: Lecture Notes on Delaunay Mesh Generation, Tech. Rep., University of California, Berkeley, 1999. a
Teng, J. and Markfort, C. D.: A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data, Energies, 13, 3537, https://doi.org/10.3390/en13143537, 2020. a
Thomas, J. J., Annoni, J., Fleming, P. A., and Ning, A.: Comparison of Wind Farm Layout Optimization Results Using a Simple Wake Model and Gradient-Based Optimization to Large Eddy Simulations, in: AIAA Scitech 2019 Forum American Institute of Aeronautics and Astronautics, San Diego, California, https://doi.org/10.2514/6.2019-0538, 2019. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Yang, M., Zhang, L., Cui, Y., Yang, Q., and Huang, B.: The impact of wind field spatial heterogeneity and variability on short-term wind power forecast errors, J. Renew. Sustain. Ener., 11, 033304, https://doi.org/10.1063/1.5064438, 2019. a
You, M., Byon, E., Jin, J. J., and Lee, G.: When wind travels through turbines: A new statistical approach for characterizing heterogeneous wake effects in multi-turbine wind farms, IISE Transactions, 49, 84–95, https://doi.org/10.1080/0740817X.2016.1204489, 2016. a
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Most current wind turbine wake models struggle to accurately simulate spatially variant wind...
Altmetrics
Final-revised paper
Preprint