Articles | Volume 6, issue 3
Wind Energ. Sci., 6, 885–901, 2021
https://doi.org/10.5194/wes-6-885-2021
Wind Energ. Sci., 6, 885–901, 2021
https://doi.org/10.5194/wes-6-885-2021

Research article 08 Jun 2021

Research article | 08 Jun 2021

Model-based design of a wave-feedforward control strategy in floating wind turbines

Alessandro Fontanella et al.

Related authors

UNAFLOW: a holistic experiment about the aerodynamics of floating wind turbines under imposed surge motion
Alessandro Fontanella, Ilmas Bayati, Robert Mikkelsen, Marco Belloli, and Alberto Zasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-12,https://doi.org/10.5194/wes-2021-12, 2021
Revised manuscript under review for WES
Short summary

Related subject area

Control and system identification
Active flap control with the trailing edge flap hinge moment as a sensor: using it to estimate local blade inflow conditions and to reduce extreme blade loads and deflections
Sebastian Perez-Becker, David Marten, and Christian Oliver Paschereit
Wind Energ. Sci., 6, 791–814, https://doi.org/10.5194/wes-6-791-2021,https://doi.org/10.5194/wes-6-791-2021, 2021
Short summary
Wind inflow observation from load harmonics: initial steps towards a field validation
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021,https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Control-oriented model for secondary effects of wake steering
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021,https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Condition monitoring of roller bearings using acoustic emission
Daniel Cornel, Francisco Gutiérrez Guzmán, Georg Jacobs, and Stephan Neumann
Wind Energ. Sci., 6, 367–376, https://doi.org/10.5194/wes-6-367-2021,https://doi.org/10.5194/wes-6-367-2021, 2021
Short summary
Model-free estimation of available power using deep learning
Tuhfe Göçmen, Albert Meseguer Urbán, Jaime Liew, and Alan Wai Hou Lio
Wind Energ. Sci., 6, 111–129, https://doi.org/10.5194/wes-6-111-2021,https://doi.org/10.5194/wes-6-111-2021, 2021
Short summary

Cited articles

Al, M., Fontanella, A., van der Hoek, D., Liu, Y., Belloli, M., and van Wingerden, J. W.: Feedforward control for wave disturbance rejection on floating offshore wind turbines, J. Phys. Conf. Ser., 1618, 022048, https://doi.org/10.1088/1742-6596/1618/2/022048, 2020. a, b
Bak, C., Zahle, F., Bitsche, R., Taeseong, K., Yde, A., Henriksen, L. C., Hansen, M. H., Jose, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, DTU Wind Energy Report, Danish Wind Power Research 2013, 27–28 May 2013. a
Bayati, I., Belloli, M., Bernini, L., and Zasso, A.: A formulation for the unsteady aerodynamics of floating wind turbines, with focus on the global system dynamics, in: Proceedings of ASME 2017, 36th International Conference on Offshore Mechanics and Arctic Engineering – OMAE, ASME, Trondheim, Norway, 1–10, https://doi.org/10.1115/OMAE2017-61925, 2017. a
Dunne, F., Pao, L., Wright, A., Jonkman, B., and Kelley, N.: Combining Standard Feedback Controllers with Feedforward Blade Pitch Control for Load Mitigation in Wind Turbines, 4 January 2010–7 January 2010, Orlando, Florida, https://doi.org/10.2514/6.2010-250, 2010. a
Download
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.