Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1575-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal observations of nocturnal low-level jets and impacts on wind power production
Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
Hans‐Ertel‐Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn, Germany
Stephanie Fiedler
Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
Hans‐Ertel‐Centre for Weather Research, Climate Monitoring and Diagnostics, Cologne/Bonn, Germany
Related authors
No articles found.
Stephanie Fiedler, Fiona M. O'Connor, Duncan Watson-Parris, Robert J. Allen, William J. Collins, Paul T. Griffiths, Matthew Kasoar, Jarmo Kikstra, Jasper F. Kok, Lee T. Murray, Fabien Paulot, Maria Sand, Steven Turnock, James Weber, Laura J. Wilcox, and Vaishali Naik
EGUsphere, https://doi.org/10.5194/egusphere-2025-5669, https://doi.org/10.5194/egusphere-2025-5669, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Aerosol and Chemistry Model Intercomparison Project phase two (AerChemMIP2) allows the community to compare results from contemporary Earth system models. AerChemMIP2 is asking modelling centres to perform experiments following the same protocol. It includes experiments for enabling new science and for tracking progress. Model output will be used for addressing research and policy questions about anthropogenic and natural drivers of climate change, and the impacts on air quality.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech., 18, 2041–2067, https://doi.org/10.5194/amt-18-2041-2025, https://doi.org/10.5194/amt-18-2041-2025, 2025
Short summary
Short summary
Atmospheric stability indicates whether air vertical motion is dumped or amplified. This is important for wind energy applications as it affects wind turbine wakes and thus the yield of wind parks. The paper provides an assessment of stability metrics measured by ground-based microwave radiometers in different climatological conditions and instrument types, onshore and offshore. Results indicate that special precaution may be required offshore to achieve typical onshore performances.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Mahdi Boroughani, Fahimeh Mirchooli, Mojtaba Hadavifar, and Stephanie Fiedler
SOIL, 9, 411–423, https://doi.org/10.5194/soil-9-411-2023, https://doi.org/10.5194/soil-9-411-2023, 2023
Short summary
Short summary
The present study used several different datasets, conducted a field survey, and paired the data with three different machine learning algorithms to construct spatial maps for areas at risk of land degradation for the Lut watershed in Iran. According to the land degradation map, almost the entire study region is at risk. A large fraction of 43 % of the area is prone to both high wind-driven and water-driven soil erosion.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Robin D. Lamboll, Chris D. Jones, Ragnhild B. Skeie, Stephanie Fiedler, Bjørn H. Samset, Nathan P. Gillett, Joeri Rogelj, and Piers M. Forster
Geosci. Model Dev., 14, 3683–3695, https://doi.org/10.5194/gmd-14-3683-2021, https://doi.org/10.5194/gmd-14-3683-2021, 2021
Short summary
Short summary
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions. We can estimate the changes in emissions at a country level, but to make predictions about how this will affect our climate, we need more precise information about where the emissions happen. Here we combine older estimates of where emissions normally occur with very recent estimates of sector activity levels to enable different groups to make simulations of the climatic effects of lockdown.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Cited articles
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm
during a diurnal cycle, J. Turbulence, 17, 420–441, https://doi.org/10.1080/14685248.2015.1127379, 2016. a
Aird, J. A., Barthelmie, R. J., Shepherd, T. J., and Pryor, S. C.: WRF-simulated low-level jets over Iowa: characterization and sensitivity studies, Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, 2021. a, b
Andreas, E. L., Claffy, K. J., and Makshtas, A. P.: Low-Level Atmospheric Jets And Inversions Over The Western Weddell Sea, Bound.-Lay. Meteorol., 97,
459–486, https://doi.org/10.1023/A:1002793831076, 2000. a
Baas, P., Bosveld, F. C., Baltink, H. K., and Holtslag, A. A.: A climatology
of nocturnal low-level jets at Cabauw, J. Appl. Meteorol. Clim., 48, 1627–1642, https://doi.org/10.1175/2009JAMC1965.1, 2009. a, b
Banta, R., Newsom, R. K., Lundquist, J. K., Pichugina, Y. L., Coulter, R. L.,
and Mahrt, L.: Nocturnal Low-Level Jet Characteristics Over Kansas During
Cases-99, Bound.-Lay. Meteorol., 105, 221–252, https://doi.org/10.1023/A:1019992330866, 2002. a, b
Beyrich, F.: Sodar observations of the stable boundary layer height in relation to the nocturnal low-level jet, Meteorol. Z., 3, 29–34, 1994. a
Beyrich, F., Kalass, D., and Weisensee, U.: Influence of the nocturnal low-level-jet on the vertical and mesoscale structure of the stable boundary layer as revealed from doppler-sodar-observations, in: Acoustic remote sensing applications, Springer, 236–246, https://doi.org/10.1007/BFb0009568, 1997. a, b, c
Blackadar, A. K.: Boundary Layer Wind Maxima and Their Significance for the
Growth of Nocturnal Inversions, B. Am. Meteorol. Soc., 38, 283–290, https://doi.org/10.1175/1520-0477-38.5.283, 1957. a, b, c
Brown, A., Beljaars, A., Hersbach, H., Hollingsworth, A., Miller, M., and
Vasiljevic, D.: Wind turning across the marine atmospheric boundary layer, Q. J. Roy. Meteorol. Soc., 131, 1233–1250, 2005. a
Brown, A., Beare, R., Edwards, J., Lock, A., Keogh, S., Milton, S., and
Walters, D.: Upgrades to the boundary-layer scheme in the Met Office
numerical weather prediction model, Bound.-Lay. Meteorol., 128, 117–132, 2008. a
Debnath, M., Doubrawa, P., Optis, M., Hawbecker, P., and Bodini, N.: Extreme
wind shear events in US offshore wind energy areas and the role of induced
stratification, Wind Energ. Sci., 6, 1043–1059,
https://doi.org/10.5194/wes-6-1043-2021, 2021. a
Doosttalab, A., Siguenza-Alvarado, D., Pulletikurthi, V., Jin, Y., Bocanegra Evans, H., Chamorro, L. P., and Castillo, L.: Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance, J. Renew. Sustain. Energ., 12, 053301, https://doi.org/10.1063/5.0017230, 2020. a
Druecke, J., Borsche, M., James, P., Kaspar, F., Pfeifroth, U., Ahrens, B., and Trentmann, J.: Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification, Renew. Energy, 164,
1254–1266, https://doi.org/10.1016/j.renene.2020.10.102, 2021. a
Emeis, S.: Wind speed and shear associated with low-level jets over Northern
Germany, Meteorol. Z., 23, 295–304, https://doi.org/10.1127/0941-2948/2014/0551, 2014. a, b, c, d
Englberger, A., Lundquist, J. K., and Dörnbrack, A.: Changing the rotational direction of a wind turbine under veering inflow: a parameter study, Wind Energ. Sci., 5, 1623–1644, https://doi.org/10.5194/wes-5-1623-2020, 2020. a
FESSTVal: FESSTVaL – Field Experiment on Submesoscale Spatio-Temporal
Variability in Lindenberg, https://fesstval.de/en/ (last access: 18 July 2022), 2020. a
Frank, C., Fiedler, S., and Crewell, S.: Balancing potential of natural
variability and extremes in photovoltaic and wind energy production for
European countries, Renew. Energy, 163, 674–684, 2021. a
Gualtieri, G.: A comprehensive review on wind resource extrapolation models
applied in wind energy, Renew. Sustain. Energ. Rev., 102, 215–233, 2019. a
Gutierrez, W., Araya, G., Kiliyanpilakkil, P., Ruiz-Columbie, A., Tutkun, M.,
and Castillo, L.: Structural impact assessment of low level jets over wind
turbines, J. Renew. Sustain. Energ., 8, 023308, https://doi.org/10.1063/1.4945359, 2016. a, b, c
Gutierrez, W., Ruiz-Columbie, A., Tutkun, M., and Castillo, L.: Impacts of the low-level jet's negative wind shear on the wind turbine, Wind Energ. Sci., 2, 533–545, https://doi.org/10.5194/wes-2-533-2017, 2017. a
Han, Y., Yang, Q., Liu, N., Zhang, K., Qing, C., Li, X., Wu, X., and Luo, T.:
Analysis of wind-speed profiles and optical turbulence above Gaomeigu and
the Tibetan Plateau using ERA5 data, Mon. Notic. Roy. Astron. Soc., 501, 4692–4702, https://doi.org/10.1093/mnras/staa2960, 2021. a
Heinold, B., Knippertz, P., Marsham, J., Fiedler, S., Dixon, N., Schepanski,
K., Laurent, B., and Tegen, I.: The role of deep convection and nocturnal
low-level jets for dust emission in summertime West Africa: Estimates from
convection-permitting simulations, J. Geophys. Res.-Atmos., 118, 4385–4400, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020. a, b
IRENA: Future of wind: Deployment, investment, technology, grid integration
and socio-economic aspects (A Global Energy Transformation paper), Tech. rep., International Renewable Energy Agency, Abu Dhabi, https://www.irena.org/publications/2019/Oct/Future-of-wind (last access: 18 July 2022), 2019. a
Kalverla, P. C., Duncan, J. B., Steeneveld, G. J., and Holtslag, A. A.:
Low-level jets over the north sea based on ERA5 and observations: Together
they do better, Wind Energ. Sci., 4, 193–209, https://doi.org/10.5194/wes-4-193-2019, 2019. a, b
Lampert, A., Bernalte Jimenez, B., Gross, G., Wulff, D., and Kenull, T.:
One-year observations of the wind distribution and low-level jet occurrence
at Braunschweig, North German Plain, Wind Energy, 19, 1807–1817,
https://doi.org/10.1002/we.1951, 2016. a
Lupo, A. R.: Atmospheric blocking events: a review, Ann. NY. Acad. Sci., 1504, 5–24, 2021. a
Marke, T., Crewell, S., Schemann, V., Schween, J. H., and Tuononen, M.:
Long-term observations and high-resolution modeling of midlatitude nocturnal
boundary layer processes connected to low-level jets, J. Appl. Meteorol. Clim., 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1, 2018. a
Mirocha, J. D., Simpson, M. D., Fast, J. D., Berg, L. K., and Baskett, R. L.:
Investigation of boundary-layer wind predictions during nocturnal low-level
jet events using the Weather Research and Forecasting model, Wind Energy, 19, 739–762, https://doi.org/10.1002/we.1862, 2016. a
Murphy, P., Lundquist, J. K., and Fleming, P.: How wind speed shear and directional veer affect the power production of a megawatt-scale operational wind turbine, Wind Energ. Sci., 5, 1169–1190, https://doi.org/10.5194/wes-5-1169-2020, 2020. a, b
Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the
performance of a 1.5 µm Doppler lidar for operational vertical wind
profiling based on a 1-year trial, Atmos. Meas. Tech., 8, 2251–2266, https://doi.org/10.5194/amt-8-2251-2015, 2015. a
Pearson, G., Davies, F., and Collier, C.: An Analysis of the Performance of
the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer, J. Atmos. Ocean. Tech., 26, 240–250, https://doi.org/10.1175/2008JTECHA1128.1, 2009. a
Peña Diaz, A., Mikkelsen, T., Gryning, S.-E., Hasager, C. B., Hahmann,
A. N., Badger, M., Karagali, I., and Courtney, M.: Offshore vertical wind
shear: Final report on NORSEWInD's work task 3.1, Tech. rep., DTU Wind
Energy, https://orbit.dtu.dk/en/publications/offshore-vertical-wind-shear-final-report-on-norsewinds-work-task (last access: 18 July 2022), 2012. a
Pichugina, Y. L., Brewer, W. A., Banta, R. M., Choukulkar, A., Clack, C. T. M., Marquis, M. C., McCarty, B. J., Weickmann, A. M., Sandberg, S. P.,
Marchbanks, R. D., and Hardesty, R. M.: Properties of the offshore low level
jet and rotor layer wind shear as measured by scanning Doppler Lidar, Wind
Energy, 20, 987–1002, https://doi.org/10.1002/we.2075, 2017. a, b
Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich, S., Hahn, B., Jung, M., Pauscher, L., Seibel, A., Shan, M., Siefert, M., Steffen, J.,
Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange, B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske, J.: Powering the 21st century by wind energy – Options, facts, figures, Appl. Phys. Rev., 6, 031303, https://doi.org/10.1063/1.5089877, 2019. a, b
Sadorsky, P.: Wind energy for sustainable development: Driving factors and
future outlook, J. Clean. Product., 289, 125779, https://doi.org/10.1016/j.jclepro.2020.125779, 2021. a
Shapiro, A. and Fedorovich, E.: Analytical description of a nocturnal low-level jet, Q. J. Roy. Meteorol. Soc., 136, 1255–1262, https://doi.org/10.1002/qj.628, 2010. a, b
Sharma, V., Parlange, M. B., and Calaf, M.: Perturbations to the Spatial and
Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer
Due to an Extensive Wind Farm, Bound.-Lay. Meteorol., 162, 255–282,
https://doi.org/10.1007/s10546-016-0195-0, 2017. a
Sisterson, D. L. and Frenzen, P.: Nocturnal boundary-layer wind maxima and the problem of wind power assessment, Environ. Sci. Technol., 12, 218–221, https://doi.org/10.1021/es60138a014, 1978. a
Smalikho, I. N. and Banakh, V. A.: Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer, Atmos. Meas. Tech., 10, 4191–4208, https://doi.org/10.5194/amt-10-4191-2017, 2017. a
Steinheuer, J., Detring, C., Kayser, M., and Leinweber, R.: Doppler wind lidar wind and gust data from FESTVAL 2019/2020, Falkenberg, data version 01, Universität Hamburg [data set],
https://doi.org/10.25592/UHHFDM.9758, 2021. a
Steinheuer, J., Detring, C., Beyrich, F., Löhnert, U., Friederichs, P., and Fiedler, S.: A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements, Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, 2022. a
Stensrud, D. J.: Importance of low-level jets to climate: A review, J. Climate, 9, 1698–1711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2, 1996. a
Suomi, I., Gryning, S. E., O'Connor, E. J., and Vihma, T.: Methodology for
obtaining wind gusts using Doppler lidar, Q. J. Roy. Meteorol. Soc., 143, 2061–2072, https://doi.org/10.1002/qj.3059, 2017. a, b
Svensson, G. and Holtslag, A. A.: Analysis of model results for the turning of the wind and related momentum fluxes in the stable boundary layer,
Bound.-Lay. Meteorol., 132, 261–277, 2009. a
Svensson, N., Bergström, H., Rutgersson, A., and Sahlée, E.:
Modification of the Baltic Sea wind field by land‐sea interaction, Wind
Energy, 22, 764–779, https://doi.org/10.1002/we.2320, 2019. a
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, 1990. a
Tuononen, M., O'Connor, E. J., Sinclair, V. A., and Vakkari, V.: Low-level
jets over Utö, Finland, based on Doppler lidar observations, J. Appl. Meteorol. Clim., 56, 2577–2594, 2017. a
Vanderwende, B. J. and Lundquist, J. K.: The modification of wind turbine
performance by statistically distinct atmospheric regimes, Environ. Res. Lett., 7, 034035, https://doi.org/10.1088/1748-9326/7/3/034035, 2012. a
Van de Wiel, B. J. H., Moene, A. F., Steeneveld, G. J., Baas, P., Bosveld, F. C., and Holtslag, A. A. M.: A Conceptual View on Inertial Oscillations and Nocturnal Low-Level Jets, J. Atmos. Sci., 67, 2679–2689, https://doi.org/10.1175/2010JAS3289.1, 2010. a, b, c
Wagner, D., Steinfeld, G., Witha, B., Wurps, H., and Reuder, J.: Low level
jets over the southern North Sea, Meteorol. Z., 28, 389–415,
https://doi.org/10.1127/metz/2019/0948, 2019. a
Wharton, S. and Lundquist, J. K.: Atmospheric stability affects wind turbine
power collection, Environ. Res. Lett., 7, 014005, https://doi.org/10.1088/1748-9326/7/1/014005, 2012. a
Short summary
This work analyses a meteorological event, called nocturnal low-level jets (NLLJs), defined as high wind speeds relatively close to the surface. There were positive and negative impacts from NLLJs. While NLLJs increased the mean power production, they also increased the variability in the wind with height. Our results imply that long NLLJ events are also larger, affecting many wind turbines at the same time. Short NLLJ events are more local, having stronger effects on power variability.
This work analyses a meteorological event, called nocturnal low-level jets (NLLJs), defined as...
Altmetrics
Final-revised paper
Preprint