Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2255-2022
https://doi.org/10.5194/wes-7-2255-2022
Research article
 | 
22 Nov 2022
Research article |  | 22 Nov 2022

Evaluating the mesoscale spatio-temporal variability in simulated wind speed time series over northern Europe

Graziela Luzia, Andrea N. Hahmann, and Matti Juhani Koivisto

Related authors

Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024,https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
The Impact of Climate Change on Extreme Winds over Northern Europe According to CMIP6
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102,https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Current and future wind energy resources in the North Sea according to CMIP6
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci., 7, 2373–2391, https://doi.org/10.5194/wes-7-2373-2022,https://doi.org/10.5194/wes-7-2373-2022, 2022
Short summary
Power fluctuations in high-installation- density offshore wind fleets
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021,https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
North Sea region energy system towards 2050: integrated offshore grid and sector coupling drive offshore wind power installations
Matti Koivisto, Juan Gea-Bermúdez, Polyneikis Kanellas, Kaushik Das, and Poul Sørensen
Wind Energ. Sci., 5, 1705–1712, https://doi.org/10.5194/wes-5-1705-2020,https://doi.org/10.5194/wes-5-1705-2020, 2020
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024,https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Renewable Energy Complementarity (RECom) maps – a comprehensive visualisation tool to support spatial diversification
Til Kristian Vrana and Harald G. Svendsen
Wind Energ. Sci., 9, 919–932, https://doi.org/10.5194/wes-9-919-2024,https://doi.org/10.5194/wes-9-919-2024, 2024
Short summary
Control-oriented modelling of wind direction variability
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024,https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024,https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary

Cited articles

Badger, J., Hahmann, A., Larsén, X., Badger, M., Kelly, M., Olsen, B., and Mortensen, N.: The Global Wind Atlas: An EUDP project carried out by DTU Wind Energy, Tech. rep., DTU Wind Energy, https://orbit.dtu.dk/files/238494910/GWA_64011_0347_FinalReport.pdf (last access: 15 December 2021), 2015. a
Brown, T., Schlachtberger, D., Kies, A., Schramm, S., and Greiner, M.: Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system, Energy, 160, 720–739, https://doi.org/10.1016/j.energy.2018.06.222, 2018. a
Cannon, D., Brayshaw, D., Methven, J., Coker, P., and Lenaghan, D.: Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain, Renew. Energy, 75, 767–778, https://doi.org/10.1016/j.renene.2014.10.024, 2015. a
CESAR Database: Cabauw Experimental Site for Atmospheric Research, https://ruisdael-observatory.nl/cesar/, last access: 15 December 2020. a, b
Das, K., Litong-Palima, M., Maule, P., Altin, M., Hansen, A. D., Sørensen, P. E., and Abildgaard, H.: Adequacy of frequency reserves for high wind power generation, IET Renew. Power Generat., 11, 1286–1294, https://doi.org/10.1049/iet-rpg.2016.0501, 2017. a
Download
Short summary
This paper presents a comprehensive validation of time series produced by a mesoscale numerical weather model, a global reanalysis, and a wind atlas against observations by using a set of metrics that we present as requirements for wind energy integration studies. We perform a sensitivity analysis on the numerical weather model in multiple configurations, such as related to model grid spacing and nesting arrangements, to define the model setup that outperforms in various time series aspects.
Altmetrics
Final-revised paper
Preprint