Articles | Volume 7, issue 6
Research article
09 Dec 2022
Research article |  | 09 Dec 2022

The Jensen wind farm parameterization

Yulong Ma, Cristina L. Archer, and Ahmadreza Vasel-Be-Hagh

Related authors

Impacts of maritime shipping on air pollution along the US East Coast
Maryam Golbazi and Cristina Archer
Atmos. Chem. Phys., 23, 15057–15075,,, 2023
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320,,, 2024
Short summary
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280,,, 2024
Short summary
The wind farm pressure field
Ronald B. Smith
Wind Energ. Sci., 9, 253–261,,, 2024
Short summary
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci. Discuss.,,, 2023
Revised manuscript under review for WES
Short summary
Realistic turbulent inflow conditions for estimating the performance of a floating wind turbine
Cédric Raibaudo, Jean-Christophe Gilloteaux, and Laurent Perret
Wind Energ. Sci., 8, 1711–1725,,, 2023
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, J. Renew. Sustain. Energ., 7, 013121,, 2015. a, b, c
Archer, C. and Vasel-Be-Hagh, A.: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation, Sustain. Energ. Technol. Assess., 33, 34–43,, 2019. a
Archer, C. L., Mirzaeisefat, S., and Lee, S.: Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation, Geophys. Res. Lett., 40, 4963–4970,, 2013. a
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast, J. Geophys. Res., 121, 8869–8885,, 2016. a
Archer, C. L., Vasel-Be-Hagh, A., Yan, C., Wu, S., Pan, Y., Brodie, J., and Maguire, A.: Review and evaluation of wake loss models for wind energy applications, Appl. Energy, 226, 1187–1207,, 2018. a, b, c, d, e, f, g, h, i
Short summary
Wind turbine wakes are important because they reduce the power production of wind farms and may cause unintended impacts on the weather around wind farms. Weather prediction models, like WRF and MPAS, are often used to predict both power and impacts of wind farms, but they lack an accurate treatment of wind farm wakes. We developed the Jensen wind farm parameterization, based on the existing Jensen model of an idealized wake. The Jensen parameterization is accurate and computationally efficient.
Final-revised paper