Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2407-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-2407-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Jensen wind farm parameterization
Yulong Ma
Center for Research in Wind (CReW), University of Delaware, Newark, DE 19716, USA
Center for Research in Wind (CReW), University of Delaware, Newark, DE 19716, USA
Ahmadreza Vasel-Be-Hagh
Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
Related authors
No articles found.
Ali Khanjari and Cristina Archer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-220, https://doi.org/10.5194/wes-2025-220, 2025
Preprint under review for WES
Short summary
Short summary
In a wind farm, wind turbines decrease the wind speed and add turbulence, reducing the efficiency of turbines behind them and the overall wind farm performance. This study organizes mathematical models and uses computer simulations to examine how turbines interact. The results will help improve wind farm design and better understanding of their environmental effects in the future.
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025, https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary
Short summary
Two approximate analytical expressions are derived, one for the variance of wind speed and the other for turbulence intensity, based on one simple assumption: that the turbulent fluctuations in wind are small with respect to the mean. The formulations perform well when applied to the observations from the American WAKE experimeNt (AWAKEN) field campaign conducted in 2023.
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025, https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Short summary
Wind turbines add turbulence to the atmosphere behind them, especially 4–6 diameters downstream and near the rotor top. We propose an equation that predicts the distribution of added turbulence as a function of a turbine parameter (thrust coefficient) and an atmospheric parameter (undisturbed turbulence intensity before the turbine). We find that our equation performs well, although not perfectly. Ultimately this equation can be used to better understand how wind turbines affect the atmosphere.
Maryam Golbazi and Cristina Archer
Atmos. Chem. Phys., 23, 15057–15075, https://doi.org/10.5194/acp-23-15057-2023, https://doi.org/10.5194/acp-23-15057-2023, 2023
Short summary
Short summary
We use scientific models to study the impact of ship emissions on air quality along the US East Coast. We find an increase in three major pollutants (PM2.5, NO2, and SO2) in coastal regions. However, we detect a reduction in ozone (O3) levels in major coastal cities. This reduction is linked to the significant emissions of nitrogen oxides (NOx) from ships, which scavenged O3, especially in highly polluted urban areas experiencing an NOx-limited regime.
Cited articles
Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for
large-scale atmospheric models, J. Renew. Sustain. Energ., 7, 013121, https://doi.org/10.1063/1.4907600, 2015. a, b, c
Archer, C. and Vasel-Be-Hagh, A.: Wake steering via yaw control in
multi-turbine wind farms: Recommendations based on large-eddy simulation,
Sustain. Energ. Technol. Assess., 33, 34–43, https://doi.org/10.1016/j.seta.2019.03.002, 2019. a
Archer, C. L., Mirzaeisefat, S., and Lee, S.: Quantifying the sensitivity of
wind farm performance to array layout options using large-eddy simulation,
Geophys. Res. Lett., 40, 4963–4970, https://doi.org/10.1002/grl.50911, 2013. a
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.:
On the predominance of unstable atmospheric conditions in the marine
boundary layer offshore of the U.S. northeastern coast, J. Geophys. Res., 121, 8869–8885, https://doi.org/10.1002/2016JD024896, 2016. a
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J. G., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E., and
Chaviaropoulos, P.: Modelling and measuring flow and wind turbine wakes in
large wind farms offshore, Wind Energy, 12, 431–444, https://doi.org/10.1002/we.348,
2009. a
Byrkjedal, Ø., Bredesen, R., Keck, R.-E., Sondell, N., and Berge, E.:
Properties of a wind farm wake as simulated by a numerical weather prediction
model for the Smøla wind farm, in: European Wind Energy Association
Conference and Exhibition 2014, EWEA 2014, 10–13 March 2014, Barcelona, Spain, 2014. a
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteorol. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027, 1955. a
Choukulkar, A., Pichugina, Y., Clack, C. T. M., Calhoun, R., Banta, R., Brewer, A., and Hardesty, M.: A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting, Wind Energy, 19, 1439–1452, https://doi.org/10.1002/we.1929, 2016. a
Dahlberg, J.-Å.: Assessment of the Lillgrund windfarm, Tech. Rep. 6_1 LG
Pilot Report, Vattenfall, Stockholm, Sweden, 29 pp., https://docplayer.net/35369081-Assessment-of-the-lillgrund-windfarm.html (last access: 5 December 2022), 2009. a
Eriksson, O., Lindvall, J., Breton, S.-P., and Ivanell, S.: Wake downstream of the Lillgrund wind farm - A comparison between LES using the actuator disc
method and a wind farm parametrization in WRF, J. Phys.: Conf. Ser., 625, 012028, https://doi.org/10.1088/1742-6596/625/1/012028, 2015. a, b, c
Eriksson, O., Baltscheffsky, M., Breton, S.-P., Söderberg, S., and Ivanell, S.: The Long distance wake behind Horns Rev I studied using large eddy simulations and a wind turbine parameterization in WRF, J. Phys.: Conf. Ser., 854, 012012, https://doi.org/10.1088/1742-6596/854/1/012012, 2017. a
Fitch, A. C.: Climate impacts of large-scale wind farms as parameterized in a
global climate model, J. Climate, 28, 6160–6180, https://doi.org/10.1175/JCLI-D-14-00245.1, 2015. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K.,
Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind Farms as
Parameterized in a Mesoscale NWP Model, Mon. Weather Rev., 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1, 2012. a, b
Fitch, A. C., Lundquist, J. K., and Olson, J. B.: Mesoscale Influences of Wind Farms throughout a Diurnal Cycle, Mon. Weather Rev., 141, 2173–2198,
https://doi.org/10.1175/MWR-D-12-00185.1, 2013a. a
Fitch, A. C., Olson, J. B., and Lundquist, J. K.: Parameterization of wind
farms in climate models, J. Climate, 26, 6439–6458,
https://doi.org/10.1175/JCLI-D-12-00376.1, 2013b. a
Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A.,
Murphy, P., Lundquist, J., Moriarty, P., Fleming, K., van Dam, J., Bay, C.,
Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and
Brake, D.: Initial results from a field campaign of wake steering applied at
a commercial wind farm – Part 1, Wind Energ. Sci., 4, 273–285,
https://doi.org/10.5194/wes-4-273-2019, 2019. a
Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S., and
Hojstrup, J.: Analytical modelling of wind speed deficit in large offshore
wind farms, Wind Energy, 9, 39–53, https://doi.org/10.1002/we.189, 2006. a
Gaumond, M., Réthoré, P. E., Ott, S., Peña, A., Bechmann, A., and
Hansen, K. S.: Evaluation of the wind direction uncertainty and its impact on
wake modeling at the Horns Rev offshore wind farm, Wind Energy, 17, 1169–1178, https://doi.org/10.1002/we.1625, 2014. a, b, c
Ge, M., Wu, Y., Liu, Y., and Li, Q.: A two-dimensional model based on the
expansion of physical wake boundary for wind-turbine wakes, Appl. Energy, 233, 975–984, 2019. a
Ghaisas, N., Archer, C., Xie, S., Wu, S., and Maguire, E.: Evaluation of
layout and atmospheric stability effects in wind farms using large-eddy
simulation, Wind Energy, 20, 1227–1240, https://doi.org/10.1002/we.2091, 2017. a
Ghaisas, N. S. and Archer, C. L.: Geometry-Based Models for Studying the
Effects of Wind Farm Layout, J. Atmos. Ocean. Tech., 33, 481–501, https://doi.org/10.1175/JTECH-D-14-00199.1, 2016. a, b
Göçmen, T., van der Laan, P., Réthoré, P. E., Diaz, A. P.,
Larsen, G. C., and Ott, S.: Wind turbine wake models developed at the
Technical University of Denmark: A review, Renew. Sustain. Energ. Rev., 60, 752–769, https://doi.org/10.1016/j.rser.2016.01.113, 2016. a, b
Iungo, G. V., Santhanagopalan, V., Ciri, U., Viola, F., Zhan, L., Rotea, M. A., and Leonardi, S.: Parabolic RANS solver for low-computational-cost
simulations of wind turbine wakes, Wind Energy, 21, 184–197, https://doi.org/10.1002/we.2154, 2018. a
Jensen, N. O.: A note on wind generator interaction, Tech Rep Risø-M-2411,
Risø National Laboratory, Denmark, 16 pp.,
https://orbit.dtu.dk/files/55857682/ris_m_2411.pdf (last access: 5 December 2022), 1983. a
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for the
WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012. a
Jiménez, P. A., Navarro, J., Palomares, A. M., and Dudhia, J.: Mesoscale
modeling of offshore wind turbine wakes at the wind farm resolving scale: A
composite-based analysis with the Weather Research and Forecasting model over Horns Rev, Wind Energy, 18, 559–566, https://doi.org/10.1002/we.1708, 2015. a, b, c
Johlas, H. M., Martínez-Tossas, L., Lackner, M., Schmidt, D., and
Churchfield, M.: Large eddy simulations of offshore wind turbine wakes for
two floating platform types, J. Phys.: Conf. Ser., 1452, 012034, https://doi.org/10.1088/1742-6596/1452/1/012034, 2020. a
Katic, I., Højstrup, J., and Jensen, N. O.: A simple model for cluster
efficiency, in: European Wind Energy Association Conference and Exhibition,
7–9 October 1986, Rome, Italy, 407–410,
https://orbit.dtu.dk/files/106427419/A_Simple_Model_for_Cluster_Efficiency_EWEC_86_.pdf
(last access: 5 December 2022), 1986. a, b, c
Keane, A., Aguirre, P., Ferchland, H., Clive, P., and Gallacher, D.: An
analytical model for a full wind turbine wake, J. Phys.: Conf. Ser., 753, 032039, https://doi.org/10.1088/1742-6596/753/3/032039, 2016. a
Kirchner-Bossi, N. and Porté-Agel, F.: Realistic Wind Farm Layout
Optimization through Genetic Algorithms Using a Gaussian Wake Model,
Energies, 11, 3268, https://doi.org/10.3390/en11123268, 2018. a
Larsen, G. C.: A simple wake calculation procedure, Tech Rep Risø-M-2760,
Risø National Laboratory, Denmark, 53 pp., https://backend.orbit.dtu.dk/ws/portalfiles/portal/55567186/ris_m_2760.pdf
(last access: 5 December 2022), 1988. a
Lee, J. C. and Lundquist, J. K.: Evaluation of the wind farm parameterization
in the Weather Research and Forecasting model (version 3.8.1) with
meteorological and turbine power data, Geosci. Model Dev., 10, 4229–4244, https://doi.org/10.5194/gmd-10-4229-2017, 2017. a
Lissaman, P. B. S.: Energy effectiveness of arbitrary arrays of wind turbines, J. Energy, 3, 323–328, https://doi.org/10.2514/3.62441, 1979. a
Lu, H. and Porté-Agel, F.: Large-eddy simulation of a very large wind
farm in a stable atmospheric boundary layer, Phys. Fluids, 23, 065101, https://doi.org/10.1063/1.3589857, 2011. a
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M.: Costs
and consequences of wind turbine wake effects arising from uncoordinated wind
energy development, Nat. Energy, 4, 26–34, https://doi.org/10.1038/s41560-018-0281-2, 2019. a
Ma, Y., Archer, C. L., and Vasel-Be-Hagh, A.: Comparison of individual versus
ensemble wind farm parameterizations inclusive of sub-grid wakes for the
WRF model, Wind Energy, 25, 1573–1595, https://doi.org/10.1002/we.2758, 2022. a
Machefaux, E., Larsen, G. C., and Leon, J. P. M.: Engineering models for
merging wakes in wind farm optimization applications, J. Phys.: Conf. Ser., 625, 012037, https://doi.org/10.1088/1742-6596/625/1/012037, 2015. a
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure
model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn. 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009. a, b
Nouri, R., Vasel-Be-Hagh, A., and Archer, C. L.: The Coriolis force and the
direction of rotation of the blades significantly affect the wake of wind
turbines, Appl. Energy, 277, 115511, https://doi.org/10.1016/j.apenergy.2020.115511, 2020. a
Pan, Y., Yan, C., and Archer, C. L.: Precipitation reduction during Hurricane
Harvey with simulated offshore wind farms, Environ. Res. Lett., 13, 084007, https://doi.org/10.1088/1748-9326/aad245, 2018. a
Peña, A., Réthoré, P.-E., and Rathmann, O.: Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model, Renew. Energy, 70, 164–171, https://doi.org/10.1016/j.renene.2014.02.019, 2014. a
Peña, A., Hansen, K. S., Ott, S., and van der Laan, M. P.: On wake
modeling, wind-farm gradients, and AEP predictions at the Anholt wind
farm, Wind Energ. Sci., 3, 191–202, https://doi.org/10.5194/wes-3-191-2018, 2018. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-turbine and
wind-farm flows: A review, Bound.-Lay. Meteorol., 174, 1–59,
https://doi.org/10.1007/s10546-019-00473-0, 2020. a
Pryor, S. C., Barthelmie, R. J., and Shepherd, T. J.: The Influence of
Real-World Wind Turbine Deployments on Local to Mesoscale Climate, J. Geophys. Res.-Atmos., 123, 5804–5826, https://doi.org/10.1029/2017JD028114, 2018. a
Pryor, S. C., Shepherd, T. J., Barthelmie, R. J., Hahmann, A. N., and Volker,
P.: Wind Farm Wakes Simulated Using WRF, J. Phys.: Conf. Ser., 1256, 012025, https://doi.org/10.1088/1742-6596/1256/1/012025, 2019. a
Rai, R., Berg, L., Kosović, B., Haupt, S., Mirocha, J., Ennis, B., and Draxl, C.: Evaluation of the impact of horizontal grid spacing in terra incognita on coupled mesoscale–microscale simulations using the WRF framework, Mon. Weather Rev., 147, 1007–1027, https://doi.org/10.1175/MWR-D-18-0282.1, 2019. a
Ritter, M., Pieralli, S., and Odening, M.: Neighborhood effects in wind farm
performance: A regression approach, Energies, 10, 365, https://doi.org/10.3390/en10030365, 2017. a
Rivas, R. A., Clausen, J., Hansen, K. S., and Jensen, L. E.: Solving the
Turbine Positioning Problem for Large Offshore Wind Farms by Simulated
Annealing, Wind Eng., 33, 287–297, https://doi.org/10.1260/0309-524x.33.3.287, 2009. a
Shepherd, T. J., Barthelmie, R. J., and Pryor, S. C.: Sensitivity of Wind
Turbine Array Downstream Effects to the Parameterization Used in WRF, J. Appl. Meteorol. Clim., 59, 333–361, https://doi.org/10.1175/JAMC-D-19-0135.1, 2020. a
Simisiroglou, N., Polatidis, H., and Ivanell, S.: Wind farm power production
assessment: Introduction of a new actuator disc method and comparison with
existing models in the context of a case study, Appl. Sci., 9, 431, https://doi.org/10.3390/app9030431, 2019. a
Simley, E., Fleming, P., and King, J.: Design and analysis of a wake steering
controller with wind direction variability, Wind Energ. Sci., 5, 451–468,
https://doi.org/10.5194/wes-5-451-2020, 2020. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
Advanced Research WRF version 3, Tech. Rep. NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, Colorado, 125 pp., https://doi.org/10.5065/D68S4MVH, 2008. a
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S. H., and
Ringler, T. D.: A multiscale nonhydrostatic atmospheric model using
centroidal Voronoi tesselations and C-grid staggering, Mon. Weather Rev., 140, 3090–3105, https://doi.org/10.1175/MWR-D-11-00215.1, 2012. a
Staid, A., VerHulst, C., and Guikema, S. D.: A comparison of methods for
assessing power output in non-uniform onshore wind farms, Wind Energy, 21,
42–52, https://doi.org/10.1002/we.2143, 2018. a
Stevens, R. and Meneveau, C.: Large eddy simulation study of extended wind
farms with large inter turbine spacing, J. Phys.: Conf. Ser., 1618, 062011, https://doi.org/10.1088/1742-6596/1618/6/062011, 2020. a
Stevens, R. J. A. M., Dennice, F. G., and Meneveau, C.: Generalized coupled
wake boundary layer model: applications and comparisons with field and LES
data for two wind farms, Wind Energy, 19, 2023–2040, 2016. a
St. Pé, A., Sperling, M., Brodie, J. F., and Delgado, R.: Classifying
rotor-layer wind to reduce offshore available power uncertainty, Wind Energy,
21, 461–473, https://doi.org/10.1002/we.2159, 2018. a
Tian, L., Zhu, W., Shen, W., Song, Y., and Zhao, N.: Prediction of multi-wake
problems using an improved Jensen wake model, Renew. Energy, 102, 457–469, 2017. a
van der Laan, M. P., Sørensen, N. N., Réthoré, P.-E., Mann, J.,
Kelly, M. C., Troldborg, N., Hansen, K. S., and Murcia, J. P.: The
k–ϵ–fP model applied to wind farms, Wind Energy, 18, 2065–2084, https://doi.org/10.1002/we.1804, 2015. a
van der Laan, M. P., Peña, A., Volker, P., Hansen, K. S., Sørensen,
N. N., Ott, S., and Hasager, C. B.: Challenges in simulating coastal effects
on an offshore wind farm, J. Phys.: Con. Ser., 854, 012046, https://doi.org/10.1088/1742-6596/854/1/012046, 2017. a
Vasel-Be-Hagh, A. and Archer, C. L.: Wind farm hub height optimization, Appl. Energy, 195, 905–921, https://doi.org/10.1016/j.apenergy.2017.03.089, 2017.
a
Volker, P. J., Badger, J., Hahmann, A. N., and Ott, S.: The explicit wake
parametrisation V1.0: A wind farm parametrisation in the mesoscale model
WRF, Geosci. Model Dev., 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015, 2015. a, b
Volker, P. J. H., Hahmann, A. N., Badger, J., and Jörgensen, H. E.:
Prospects for generating electricity by large onshore and offshore wind farms, Environ. Res. Lett., 12, 034022, https://doi.org/10.1088/1748-9326/aa5d86, 2017. a
Voutsinas, S., Rados, K., and Zervos, A.: On the analysis of wake effects in
wind parks, Wind Eng., 14, 204–219, 1990. a
Wu, S. and Archer, C. L.: Near-ground effects of wind turbines: Observations
and physical mechanisms, Mon. Weather Rev., 149, 879–898, https://doi.org/10.1175/MWR-D-20-0186.1, 2021. a
Wu, Y.-T. and Porté-Agel, F.: Modeling turbine wakes and power losses
within a wind farm using LES: An application to the Horns Rev offshore wind farm, Renew. Energy, 75, 945–955, https://doi.org/10.1016/j.renene.2014.06.019, 2015. a
Xia, G., Zhou, L., Minder, J. R., Fovell, R. G., and Jiménez, P. A.:
Simulating impacts of real-world wind farms on land surface temperature
using the WRF model: Physical mechanisms, Clim. Dynam., 53, 1723–1739,
https://doi.org/10.1007/s00382-019-04725-0, 2019. a
Xie, S. and Archer, C. L.: Self-similarity and turbulence characteristics of
wind turbine wakes via large-eddy simulation, Wind Energy, 18, 1815–1838,
https://doi.org/10.1002/we.1792, 2015. a, b, c
Xie, S. and Archer, C. L.: A Numerical Study of Wind-Turbine Wakes for Three
Atmospheric Stability Conditions, Bound.-Lay. Meteorol., 165, 87–112,
https://doi.org/10.1007/s10546-017-0259-9, 2017. a, b
Zong, H. and Porté-Agel, F.: A momentum-conserving wake superposition
method for wind farm power prediction, J. Fluid Mech., 889, A8, https://doi.org/10.1017/jfm.2020.77, 2020. a
Short summary
Wind turbine wakes are important because they reduce the power production of wind farms and may cause unintended impacts on the weather around wind farms. Weather prediction models, like WRF and MPAS, are often used to predict both power and impacts of wind farms, but they lack an accurate treatment of wind farm wakes. We developed the Jensen wind farm parameterization, based on the existing Jensen model of an idealized wake. The Jensen parameterization is accurate and computationally efficient.
Wind turbine wakes are important because they reduce the power production of wind farms and may...
Altmetrics
Final-revised paper
Preprint