Articles | Volume 8, issue 1
https://doi.org/10.5194/wes-8-41-2023
https://doi.org/10.5194/wes-8-41-2023
Research article
 | 
04 Jan 2023
Research article |  | 04 Jan 2023

Computational fluid dynamics (CFD) modeling of actual eroded wind turbine blades

Kisorthman Vimalakanthan, Harald van der Mijle Meijer, Iana Bakhmet, and Gerard Schepers

Related authors

Estimating microplastics emissions from offshore wind turbine blades in the Dutch North Sea
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-175,https://doi.org/10.5194/wes-2024-175, 2024
Revised manuscript under review for WES
Short summary
Progress in the validation of rotor aerodynamic codes using field data
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023,https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
A comparison of dynamic inflow models for the blade element momentum method
Simone Mancini, Koen Boorsma, Gerard Schepers, and Feike Savenije
Wind Energ. Sci., 8, 193–210, https://doi.org/10.5194/wes-8-193-2023,https://doi.org/10.5194/wes-8-193-2023, 2023
Short summary
Current status and grand challenges for small wind turbine technology
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022,https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Experimental analysis of the dynamic inflow effect due to coherent gusts
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022,https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
Semi-analytical methodology for fretting wear evaluation of unlubricated pitch bearing raceways under operative and non-operative periods
David Cubillas, Mireia Olave, Iñigo Llavori, Ibai Ulacia, Jon Larrañaga, Aitor Zurutuza, and Arkaitz Lopez
Wind Energ. Sci., 10, 401–415, https://doi.org/10.5194/wes-10-401-2025,https://doi.org/10.5194/wes-10-401-2025, 2025
Short summary
Effect of blade inclination angle for straight-bladed vertical-axis wind turbines
Laurence Morgan, Abbas Kazemi Amiri, William Leithead, and James Carroll
Wind Energ. Sci., 10, 381–399, https://doi.org/10.5194/wes-10-381-2025,https://doi.org/10.5194/wes-10-381-2025, 2025
Short summary
Full-scale wind turbine performance assessment: a customised, sensor-augmented aeroelastic modelling approach
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 10, 269–291, https://doi.org/10.5194/wes-10-269-2025,https://doi.org/10.5194/wes-10-269-2025, 2025
Short summary
Challenges in detecting wind turbine power loss: the effects of blade erosion, turbulence, and time averaging
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 10, 227–243, https://doi.org/10.5194/wes-10-227-2025,https://doi.org/10.5194/wes-10-227-2025, 2025
Short summary
Identification of operational deflection shapes of a wind turbine gearbox using fiber-optic strain sensors on a serial production end-of-line test bench
Unai Gutierrez Santiago, Aemilius A. W. van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 207–225, https://doi.org/10.5194/wes-10-207-2025,https://doi.org/10.5194/wes-10-207-2025, 2025
Short summary

Cited articles

Aanæs, H., Nielsen, E., and Dahl, A. B.: Autonomous surface inspection of wind turbine blades for quality assurance in production, in: Proc. 9th Eur. Workshop Struct. Health Monit., Manchester, UK, https://backend.orbit.dtu.dk/ws/portalfiles/portal/194663672/0098_Lyngby.pdf (last access: 16 December 2022), 2018. a, b
Abbott, I. H., Von Doenhoff, A. E., and Stivers Jr., L. S.: Summary of airfoil data, Tech. rep., ISBN 9780486605869, 1945. a, b, c, d, e, f
Baldacchino, D., Ferreira, C., Tavernier, D. D., Timmer, W., and Van Bussel, G.: Experimental parameter study for passive vortex generators on a 30 % thick airfoil, Wind Energy, 21, 745–765, 2018. a
Bons, J. P.: A review of surface roughness effects in gas turbines, J. Turbomach., 132, 1–16 pp., https://doi.org/10.1115/1.3066315, 2010. a
Dassler, P., Kožulović, D., and Fiala, A.: Modelling of roughness-induced transition using local variables, in: V European Conference on CFD, ECCOMAS CFD, https://www.researchgate.net/profile/Dragan-Kozulovic/publication/ (last access: 16 December 2022), 2010. a
Download
Short summary
Leading edge erosion (LEE) is one of the most critical degradation mechanisms that occur with wind turbine blades. A detailed understanding of the LEE process and the impact on aerodynamic performance due to the damaged leading edge is required to optimize blade maintenance. Providing accurate modeling tools is therefore essential. This novel study assesses CFD approaches for modeling high-resolution scanned LE surfaces from an actual blade with LEE damages.
Share
Altmetrics
Final-revised paper
Preprint