Articles | Volume 9, issue 5
https://doi.org/10.5194/wes-9-1189-2024
https://doi.org/10.5194/wes-9-1189-2024
Research article
 | 
16 May 2024
Research article |  | 16 May 2024

Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment

Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens

Related authors

Modeling the effects of active wake mixing on wake behavior through large scale coherent structures
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, and Marc Henry de Frahan
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-155,https://doi.org/10.5194/wes-2024-155, 2024
Preprint under review for WES
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024,https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Converging profile relationships for offshore wind speed and turbulence intensity
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024,https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024,https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary
Experimental evaluation of wind turbine wake turbulence impacts on a general aviation aircraft
Jonathan D. Rogers
Wind Energ. Sci., 9, 1849–1868, https://doi.org/10.5194/wes-9-1849-2024,https://doi.org/10.5194/wes-9-1849-2024, 2024
Short summary

Cited articles

Bak, C., Skrzypiński, W., Gaunaa, M., Villanueva, H., Brønnum, N. F., and Kruse, E. K.: Full scale wind turbine test of vortex generators mounted on the entire blade, J. Phys. Conf. Ser., 753, 022001, https://doi.org/10.1088/1742-6596/753/2/022001, 2016. a
Belu, R.: Effects of Complex Wind Regimes and Meteorlogical Parameters on Wind Turbine Performances, IEEE Xplore, ISBN 9781467318358, 2012. a
Berg, J., Bryant, J., Leblanc, B., Maniaci, D., Naughton, B., Paquette, J., Resor, B., White, J., and Kroeker, D.: Scaled Wind Farm Technology Facility Overview, Tech. rep., SAND2013-10632C, 2013. a
Cassamo, N.: Active Wake Control Validation Methodology, Tech. rep., TNO, 21-12461, February 2022, 2022. a, b
Castaignet, D., Wedel-Heinen, J. J., Kim, T., Buhl, T., and Poulsen, N. K.: Results from the first full scale wind turbine equipped with trailing edge flaps, 28th AIAA Applied Aerodynamics Conference, Chicago, Illinois, 28 June–1 July 2010, 1, https://doi.org/10.2514/6.2010-4407, 2010. a
Download
Short summary
Experiments offer incredible value to science, but results must come with an uncertainty quantification to be meaningful. We present a method to simulate a proposed experiment, calculate uncertainties, and determine the measurement duration (total time of measurements) and the experiment duration (total time to collect the required measurement data when including condition variability and time when measurement is not occurring) required to produce statistically significant and converged results.
Altmetrics
Final-revised paper
Preprint