Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1431-2024
https://doi.org/10.5194/wes-9-1431-2024
Research article
 | 
27 Jun 2024
Research article |  | 27 Jun 2024

Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network

Cássia Maria Leme Beu and Eduardo Landulfo

Related authors

Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data: impact of wavelength choice
Gregori de Arruda Moreira, Fábio Juliano da Silva Lopes, Juan Luis Guerrero-Rascado, Jonatan João da Silva, Antonio Arleques Gomes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Meas. Tech., 12, 4261–4276, https://doi.org/10.5194/amt-12-4261-2019,https://doi.org/10.5194/amt-12-4261-2019, 2019
Short summary
Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
Gregori de Arruda Moreira, Juan Luis Guerrero-Rascado, Jose A. Benavent-Oltra, Pablo Ortiz-Amezcua, Roberto Román, Andrés E. Bedoya-Velásquez, Juan Antonio Bravo-Aranda, Francisco Jose Olmo Reyes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 1263–1280, https://doi.org/10.5194/acp-19-1263-2019,https://doi.org/10.5194/acp-19-1263-2019, 2019
Short summary
Profiling of CH4 background mixing ratio in the lower troposphere with Raman lidar: a feasibility experiment
Igor Veselovskii, Philippe Goloub, Qiaoyun Hu, Thierry Podvin, David N. Whiteman, Mikhael Korenskiy, and Eduardo Landulfo
Atmos. Meas. Tech., 12, 119–128, https://doi.org/10.5194/amt-12-119-2019,https://doi.org/10.5194/amt-12-119-2019, 2019
Short summary
Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil
Carlos Eduardo Souto-Oliveira, Maria de Fátima Andrade, Prashant Kumar, Fábio Juliano da Silva Lopes, Marly Babinski, and Eduardo Landulfo
Atmos. Chem. Phys., 16, 14635–14656, https://doi.org/10.5194/acp-16-14635-2016,https://doi.org/10.5194/acp-16-14635-2016, 2016
Short summary
Evaluating CALIPSO's 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil
F. J. S. Lopes, E. Landulfo, and M. A. Vaughan
Atmos. Meas. Tech., 6, 3281–3299, https://doi.org/10.5194/amt-6-3281-2013,https://doi.org/10.5194/amt-6-3281-2013, 2013

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024,https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods
Mostafa Bakhoday Paskyabi
Wind Energ. Sci., 9, 1631–1645, https://doi.org/10.5194/wes-9-1631-2024,https://doi.org/10.5194/wes-9-1631-2024, 2024
Short summary
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Experimental Evaluation of Wind Turbine Wake Turbulence Impacts on a General Aviation Aircraft
Jonathan Rogers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-51,https://doi.org/10.5194/wes-2024-51, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Almeida, L. B.: Multilayer perceptrons, in: Handbook of Neural Computation, CRC Press, ISBN 9780429142772, 1997. a
Al-Shaikhi, A., Nuha, H., Mohandes, M., Rehman, S., and Adrian, M.: Vertical wind speed extrapolation model using long short-term memory and particle swarm optimization, Energ. Sci. Eng., 10, 4580–4594, https://doi.org/10.1002/ese3.1291, 2022. a, b
Bali, V., Kumar, A., and Gangwar, S.: Deep Learning based Wind Speed Forecasting-A Review, in: IEEE 2019 9th International Conference on Cloud Computing, Data Science & Engineering, 10–11 January 2019, Noida, India, https://doi.org/10.1109/confluence.2019.8776923, 2019. a, b, c
Baquero, L., Torio, H., and Leask, P.: Machine Learning Algorithms for Vertical Wind Speed Data Extrapolation: Comparison and Performance Using Mesoscale and Measured Site Data, Energies, 15, 5518, https://doi.org/10.3390/en15155518, 2022. a, b, c
Beu, C. M. L.: cassiabeu/doi.org-10.5194-wes-2023-104: v1.1, Zenodo [code], https://doi.org/10.5281/zenodo.12168778, 2024. a
Download
Short summary
Extrapolating the wind profile for complex terrain through the long short-term memory model outperformed the traditional power law methodology, which due to its universal nature cannot capture local features as the machine-learning methodology does. Moreover, considering the importance of investigating the wind potential and the need for alternative energy sources, it is motivating to find that a short observational campaign can produce better results than the traditional techniques.
Altmetrics
Final-revised paper
Preprint