Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1431-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1431-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Cássia Maria Leme Beu
CORRESPONDING AUTHOR
Instituto de Pesquisas Energéticas e Nucleares (IPEN), 2242 Prof. Lineu Prestes Av., São Paulo, Brazil
Eduardo Landulfo
Instituto de Pesquisas Energéticas e Nucleares (IPEN), 2242 Prof. Lineu Prestes Av., São Paulo, Brazil
Related authors
No articles found.
Tailine Corrêa dos Santos, Elaine Cristina Araujo, Thaís Andrade da Silva, Enrico Valente Freire, Eduardo Landulfo, and Maria de Fátima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2025-968, https://doi.org/10.5194/egusphere-2025-968, 2025
Short summary
Short summary
It is widely used in national emission inventories estimated by IPCC emission factors. These estimates are sources of data uncertainty mainly because they do not include local specificities. Addressing this gap through targeted research and data collection is essential to develop effective mitigation policies and strategies. In the case of residential energy use, GHG emissions and indoor pollutants are expected to increase, especially as natural gas use continues to expand.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Preprint withdrawn
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Juan Vicente Pallotta, Silvânia Alves de Carvalho, Fabio Juliano da Silva Lopes, Alexandre Cacheffo, Eduardo Landulfo, and Henrique Melo Jorge Barbosa
Geosci. Instrum. Method. Data Syst., 12, 171–185, https://doi.org/10.5194/gi-12-171-2023, https://doi.org/10.5194/gi-12-171-2023, 2023
Short summary
Short summary
Lidar networks coordinate efforts of different groups, providing guidelines to homogenize retrievals from different instruments. We describe an ongoing effort to develop the Lidar Processing Pipeline (LPP) collaboratively, a collection of tools developed in C/C++ to handle all the steps of a typical lidar analysis. Analysis of simulations and real lidar data showcases the LPP’s features. From this exercise, we draw a roadmap to guide future development, accommodating the needs of our community.
Cited articles
Almeida, L. B.: Multilayer perceptrons, in: Handbook of Neural Computation, CRC Press, ISBN 9780429142772, 1997. a
Al-Shaikhi, A., Nuha, H., Mohandes, M., Rehman, S., and Adrian, M.: Vertical wind speed extrapolation model using long short-term memory and particle swarm optimization, Energ. Sci. Eng., 10, 4580–4594, https://doi.org/10.1002/ese3.1291, 2022. a, b
Bali, V., Kumar, A., and Gangwar, S.: Deep Learning based Wind Speed Forecasting-A Review, in: IEEE 2019 9th International Conference on Cloud Computing, Data Science & Engineering, 10–11 January 2019, Noida, India, https://doi.org/10.1109/confluence.2019.8776923, 2019. a, b, c
Baquero, L., Torio, H., and Leask, P.: Machine Learning Algorithms for Vertical Wind Speed Data Extrapolation: Comparison and Performance Using Mesoscale and Measured Site Data, Energies, 15, 5518, https://doi.org/10.3390/en15155518, 2022. a, b, c
Beu, C. M. L.: cassiabeu/doi.org-10.5194-wes-2023-104: v1.1, Zenodo [code], https://doi.org/10.5281/zenodo.12168778, 2024. a
Beu, C. M. L. and Landulfo, E.: Turbulence Kinetic Energy Dissipation Rate Estimate for a Low-Level Jet with Doppler Lidar Data: A Case Study, Earth Interact., 26, 112–121, https://doi.org/10.1175/ei-d-20-0027.1, 2022. a, b, c
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32 https://doi.org/10.1023/a:1010933404324, 2001. a
Cheng, C.-H. and Tsai, M.-C.: An Intelligent Time Series Model Based on Hybrid Methodology for Forecasting Concentrations of Significant Air Pollutants, Atmosphere, 13, 1055, https://doi.org/10.3390/atmos13071055, 2022. a
Dalton, A. and Bekker, B.: Exogenous atmospheric variables as wind speed predictors in machine learning, Appl. Energy, 319, 119257, https://doi.org/10.1016/j.apenergy.2022.119257, 2022. a
Efron, B. and Tibshirani, R.: An Introduction to the Bootstrap, Chapman and Hall/CRC, https://doi.org/10.1201/9780429246593, 1994. a
He, J., Yang, H., Zhou, S., Chen, J., and Chen, M.: A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction, Atmosphere, 14, 71, https://doi.org/10.3390/atmos14010071, 2022. a
Jesemann, A.-S., Matthias, V., Böhner, J., and Bechtel, B.: Using Neural Network NO2-Predictions to Understand Air Quality Changes in Urban Areas – A Case Study in Hamburg, Atmosphere, 13, 1929, https://doi.org/10.3390/atmos13111929, 2022. a
Jiang, H., Wang, X., and Sun, C.: Predicting PM2.5 in the Northeast China Heavy Industrial Zone: A Semi-Supervised Learning with Spatiotemporal Features, Atmosphere, 13, 1744, https://doi.org/10.3390/atmos13111744, 2022. a
Keras: Kerasguide, https://keras.io/api/layers/recurrent_layers/lstm/ (last access: 16 July 2023), 2023. a
Klockow, D. and Targa, H. J.: Performance and results of a six-year German/Brazilian research project in the industrial area of Cubatão/SP Brazil, Pure Appl. Chem., 70, 2287–2293, https://doi.org/10.1351/pac199870122287, 1998. a, b
Liu, B., Ma, X., Guo, J., Li, H., Jin, S., Ma, Y., and Gong, W.: Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment, Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, 2023. a
Liu, Y., Cai, J., and Tan, G.: Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network, Atmosphere, 13, 1861, https://doi.org/10.3390/atmos13111861, 2022. a
Medsker, L. and Jain, L. C. (Eds.): Recurrent Neural Networks, CRC Press, https://doi.org/10.1201/9781420049176, 1999. a
Mohandes, M. A. and Rehman, S.: Wind Speed Extrapolation Using Machine Learning Methods and LiDAR Measurements, IEEE Access, 6, 77634–77642, https://doi.org/10.1109/access.2018.2883677, 2018. a, b
Morellato, L. P. C. and Haddad, C. F. B.: Introduction: The Brazilian Atlantic Forest1, Biotropica, 32, 786–792, https://doi.org/10.1111/j.1744-7429.2000.tb00618.x, 2000. a
Mustakim, R., Mamat, M., and Yew, H. T.: Towards On-Site Implementation of Multi-Step Air Pollutant Index Prediction in Malaysia Industrial Area: Comparing the NARX Neural Network and Support Vector Regression, Atmosphere, 13, 1787, https://doi.org/10.3390/atmos13111787, 2022. a
Musyimi, P. K., Sahbeni, G., Timár, G., Weidinger, T., and Székely, B.: Actual Evapotranspiration Estimation Using Sentinel-1 SAR and Sentinel-3 SLSTR Data Combined with a Gradient Boosting Machine Model in Busia County, Western Kenya, Atmosphere, 13, 1927, https://doi.org/10.3390/atmos13111927, 2022. a
Nuha, H., Mohandes, M., Rehman, S., and A-Shaikhi, A.: Vertical wind speed extrapolation using regularized extreme learning machine, FME Trans., 50, 412–421, https://doi.org/10.5937/fme2203412n, 2022. a
O'Malley, T., Bursztein, E., Long, J., et al.: KerasTuner, GitHub [code], https://github.com/keras-team/keras-tuner (last access: 21 July 2023), 2019. a
Pintor, A., Pinto, C., Mendonca, J., Pilao, R., and Pinto, P.: Insights on the use of wind speed vertical extrapolation methods, in: 20th International Conference on Renewable Energies and Power Quality, RE & PQJ, Vigo, Spain, 27–29 July 2022, https://doi.org/10.24084/repqj20.410, 2022. a, b
Ribeiro, F. N., de Oliveira, A. P., Soares, J., de Miranda, R. M., Barlage, M., and Chen, F.: Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil, Atmos. Res., 214, 174–188, https://doi.org/10.1016/j.atmosres.2018.07.015, 2018. a, b
Sánchez, M. P., de Oliveira, A. P., Varona, R. P., Tito, J. V., Codato, G., Ynoue, R. Y., Ribeiro, F. N. D., Filho, E. P. M., and da Silveira, L. C.: Observational Investigation of the Low-Level Jets in the Metropolitan Region of São Paulo, Brazil, Earth Space Sci., 9, e2021EA002190, https://doi.org/10.1029/2021ea002190, 2022. a, b
Schwegmann, S., Faulhaber, J., Pfaffel, S., Yu, Z., Dörenkämper, M., Kersting, K., and Gottschall, J.: Enabling Virtual Met Masts for wind energy applications through machine learning-methods, Energy AI, 11, 100209, https://doi.org/10.1016/j.egyai.2022.100209, 2023. a, b, c
Sherstinsky, A.: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network, Physica D, 404, 132306, https://doi.org/10.1016/j.physd.2019.132306, 2020. a
Smagulova, K. and James, A. P.: A survey on LSTM memristive neural network architectures and applications, Eur. Phys. J. Spec. Top., 228, 2313–2324, https://doi.org/10.1140/epjst/e2019-900046-x, 2019. a
Smola, A. J. and Schölkopf, B.: A tutorial on support vector regression, Stat. Comput., https://doi.org/10.1023/b:stco.0000035301.49549.88, 2004. a
Song, Y. and Wang, Y.: Global Wildfire Outlook Forecast with Neural Networks, Remote Sens., 12, 2246, https://doi.org/10.3390/rs12142246, 2020. a
Soria-Ruiz, J., Fernandez-Ordoñez, Y. M., Ambrosio-Ambrosio, J. P., Escalona-Maurice, M. J., Medina-García, G., Sotelo-Ruiz, E. D., and Ramirez-Guzman, M. E.: Flooded Extent and Depth Analysis Using Optical and SAR Remote Sensing with Machine Learning Algorithms, Atmosphere, 13, 1852, https://doi.org/10.3390/atmos13111852, 2022. a
Standen, J., Wilson, C., Vosper, S., and Clark, P.: Prediction of local wind climatology from Met Office models: Virtual Met Mast techniques, Wind Energy, 20, 411–430, https://doi.org/10.1002/we.2013, 2016. a, b
Stull, R. B. (Ed.): An Introduction to Boundary Layer Meteorology, Springer Netherlands, https://doi.org/10.1007/978-94-009-3027-8, 1988. a
Torres, M. E., Colominas, M. A., and Schlotthauer: A complete ensemble empirical mode decomposition with adaptive noise, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 22–27 May 2011, Prague, Czech Republic, 4144–4147, https://doi.org/10.1109/ICASSP.2011.5947265, 2011. a, b
Tukur, A., Chidiebere, O., Shittu, F., and Lawal Abdulrahman, M.: Neural Network Ensemble for Medium Term Forecast of Wind Power Generation: A Review Keyword: Artificial Neural Network, Ensemble technique, Recurrent Neural Network, Deep Learning and Deep Recurrent neural Network, Int. J. Adv. Res. Innov. Idea. Educ., 8, 1856–1865, 2022. a
Türkan, Y. S., Aydoğmuş, H. Y., and Erdal, H.: The prediction of the wind speed at different heights by machine learning methods, Int. J. Optimiz. Control, 6, 179–187, https://doi.org/10.11121/ijocta.01.2016.00315, 2016. a, b
Vassallo, D., Krishnamurthy, R., and Fernando, H. J. S.: Decreasing wind speed extrapolation error via domain-specific feature extraction and selection, Wind Energ. Sci., 5, 959–975, https://doi.org/10.5194/wes-5-959-2020, 2020. a, b, c
Vieira, B. C. and Gramani, M. F.: Serra do Mar: The Most “Tormented” Relief in Brazil, in: World Geomorphological Landscapes, Springer Netherlands, 285–297, https://doi.org/10.1007/978-94-017-8023-0_26, 2015. a
Vieira-Filho, M. S., Lehmann, C., and Fornaro, A.: Influence of local sources and topography on air quality and rainwater composition in Cubatão and São Paulo, Brazil, Atmos. Environ., 101, 200–208, https://doi.org/10.1016/j.atmosenv.2014.11.025, 2015. a
Virtanen, P., Gommers, R., Oliphant, Reddy, T., Cournapeau, Peterson, P., Weckesser, van der Walt, Wilson, J., Millman, Nelson, A. R. J., Jones, Larson, E., Carey, Feng, Y., Moore, Laxalde, D., Perktold, Henriksen, I., Quintero, Archibald, Pedregosa, and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, J., Li, Q., and Zeng, B.: Multi-layer cooperative combined forecasting system for short-term wind speed forecasting, Sustain. Energ. Technol. Assess., 43, 100946, https://doi.org/10.1016/j.seta.2020.100946, 2021. a, b
Yu, Y., Si, X., Hu, C., and Zhang, J.: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures, Neural Comput., 31, 1235–1270, https://doi.org/10.1162/neco_a_01199, 2019. a, b
Zhang, Y., Wang, Y., Zhu, Y., Yang, L., Ge, L., and Luo, C.: Visibility Prediction Based on Machine Learning Algorithms, Atmosphere, 13, 1125, https://doi.org/10.3390/atmos13071125, 2022. a
Zhou, F., Huang, Z., and Zhang, C.: Carbon price forecasting based on CEEMDAN and LSTM, Appl. Energy, 311, 118601, https://doi.org/10.1016/j.apenergy.2022.118601, 2022. a, b
Zhou, J., Feng, J., Zhou, X., Li, Y., and Zhu, F.: Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models, Atmosphere, 14, 142, https://doi.org/10.3390/atmos14010142, 2023. a
Short summary
Extrapolating the wind profile for complex terrain through the long short-term memory model outperformed the traditional power law methodology, which due to its universal nature cannot capture local features as the machine-learning methodology does. Moreover, considering the importance of investigating the wind potential and the need for alternative energy sources, it is motivating to find that a short observational campaign can produce better results than the traditional techniques.
Extrapolating the wind profile for complex terrain through the long short-term memory model...
Altmetrics
Final-revised paper
Preprint