Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1431-2024
https://doi.org/10.5194/wes-9-1431-2024
Research article
 | 
27 Jun 2024
Research article |  | 27 Jun 2024

Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network

Cássia Maria Leme Beu and Eduardo Landulfo

Related authors

Emissions from fuel combustion by stoves in residential kitchens in São Paulo – Brazil
Tailine Corrêa dos Santos, Elaine Cristina Araujo, Thaís Andrade da Silva, Enrico Valente Freire, Eduardo Landulfo, and Maria de Fátima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2025-968,https://doi.org/10.5194/egusphere-2025-968, 2025
Short summary
Balloon Observations Suggesting Sea Salt Injection into the Stratosphere from Hunga Tonga-Hunga Ha'apai
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924,https://doi.org/10.5194/egusphere-2025-924, 2025
Short summary
Collaborative development of the Lidar Processing Pipeline (LPP) for retrievals of atmospheric aerosols and clouds
Juan Vicente Pallotta, Silvânia Alves de Carvalho, Fabio Juliano da Silva Lopes, Alexandre Cacheffo, Eduardo Landulfo, and Henrique Melo Jorge Barbosa
Geosci. Instrum. Method. Data Syst., 12, 171–185, https://doi.org/10.5194/gi-12-171-2023,https://doi.org/10.5194/gi-12-171-2023, 2023
Short summary
Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data: impact of wavelength choice
Gregori de Arruda Moreira, Fábio Juliano da Silva Lopes, Juan Luis Guerrero-Rascado, Jonatan João da Silva, Antonio Arleques Gomes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Meas. Tech., 12, 4261–4276, https://doi.org/10.5194/amt-12-4261-2019,https://doi.org/10.5194/amt-12-4261-2019, 2019
Short summary
Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
Gregori de Arruda Moreira, Juan Luis Guerrero-Rascado, Jose A. Benavent-Oltra, Pablo Ortiz-Amezcua, Roberto Román, Andrés E. Bedoya-Velásquez, Juan Antonio Bravo-Aranda, Francisco Jose Olmo Reyes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 1263–1280, https://doi.org/10.5194/acp-19-1263-2019,https://doi.org/10.5194/acp-19-1263-2019, 2019
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Performance of wind assessment datasets in United States coastal areas
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, Ethan Young, and Rao Kotamarthi
Wind Energ. Sci., 10, 1551–1574, https://doi.org/10.5194/wes-10-1551-2025,https://doi.org/10.5194/wes-10-1551-2025, 2025
Short summary
Simulated meteorological impacts of offshore wind turbines and sensitivity to the amount of added turbulence kinetic energy
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025,https://doi.org/10.5194/wes-10-1269-2025, 2025
Short summary
Evaluating mesoscale model predictions of diurnal speedup events in the Altamont Pass Wind Resource Area of California
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025,https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Swell impacts on an offshore wind farm in stable boundary layer: wake flow and energy budget analysis
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci., 10, 1101–1122, https://doi.org/10.5194/wes-10-1101-2025,https://doi.org/10.5194/wes-10-1101-2025, 2025
Short summary
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025,https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary

Cited articles

Almeida, L. B.: Multilayer perceptrons, in: Handbook of Neural Computation, CRC Press, ISBN 9780429142772, 1997. a
Al-Shaikhi, A., Nuha, H., Mohandes, M., Rehman, S., and Adrian, M.: Vertical wind speed extrapolation model using long short-term memory and particle swarm optimization, Energ. Sci. Eng., 10, 4580–4594, https://doi.org/10.1002/ese3.1291, 2022. a, b
Bali, V., Kumar, A., and Gangwar, S.: Deep Learning based Wind Speed Forecasting-A Review, in: IEEE 2019 9th International Conference on Cloud Computing, Data Science & Engineering, 10–11 January 2019, Noida, India, https://doi.org/10.1109/confluence.2019.8776923, 2019. a, b, c
Baquero, L., Torio, H., and Leask, P.: Machine Learning Algorithms for Vertical Wind Speed Data Extrapolation: Comparison and Performance Using Mesoscale and Measured Site Data, Energies, 15, 5518, https://doi.org/10.3390/en15155518, 2022. a, b, c
Beu, C. M. L.: cassiabeu/doi.org-10.5194-wes-2023-104: v1.1, Zenodo [code], https://doi.org/10.5281/zenodo.12168778, 2024. a
Download
Short summary
Extrapolating the wind profile for complex terrain through the long short-term memory model outperformed the traditional power law methodology, which due to its universal nature cannot capture local features as the machine-learning methodology does. Moreover, considering the importance of investigating the wind potential and the need for alternative energy sources, it is motivating to find that a short observational campaign can produce better results than the traditional techniques.
Share
Altmetrics
Final-revised paper
Preprint