Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1669-2024
https://doi.org/10.5194/wes-9-1669-2024
Research article
 | 
02 Aug 2024
Research article |  | 02 Aug 2024

The potential of wave feedforward control for floating wind turbines: a wave tank experiment

Amr Hegazy, Peter Naaijen, Vincent Leroy, Félicien Bonnefoy, Mohammad Rasool Mojallizadeh, Yves Pérignon, and Jan-Willem van Wingerden

Related authors

Identification of operational deflection shapes of a wind turbine gearbox using fiber-optic strain sensors on a serial production end-of-line test bench
Unai Gutierrez Santiago, Aemilius van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-83,https://doi.org/10.5194/wes-2024-83, 2024
Preprint under review for WES
Short summary
On the robustness of a blade load-based wind speed estimator to dynamic pitch control strategies
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-56,https://doi.org/10.5194/wes-2024-56, 2024
Revised manuscript accepted for WES
Short summary
Evaluating the potential of wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-50,https://doi.org/10.5194/wes-2024-50, 2024
Preprint under review for WES
Short summary
Dynamic wind farm flow control using free-vortex wake models
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024,https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Quantifying the impact of modeling fidelity on different substructure concepts for floating offshore wind turbines – Part 1: Validation of the hydrodynamic module QBlade-Ocean
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Félicien Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci., 9, 623–649, https://doi.org/10.5194/wes-9-623-2024,https://doi.org/10.5194/wes-9-623-2024, 2024
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind turbine control
Assessing the impact of waves and platform dynamics on floating wind-turbine energy production
Alessandro Fontanella, Giorgio Colpani, Marco De Pascali, Sara Muggiasca, and Marco Belloli
Wind Energ. Sci., 9, 1393–1417, https://doi.org/10.5194/wes-9-1393-2024,https://doi.org/10.5194/wes-9-1393-2024, 2024
Short summary
Combining wake redirection and derating strategies in a load-constrained wind farm power maximization
Alessandro Croce, Stefano Cacciola, and Federico Isella
Wind Energ. Sci., 9, 1211–1227, https://doi.org/10.5194/wes-9-1211-2024,https://doi.org/10.5194/wes-9-1211-2024, 2024
Short summary
On the robustness of a blade load-based wind speed estimator to dynamic pitch control strategies
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-56,https://doi.org/10.5194/wes-2024-56, 2024
Revised manuscript accepted for WES
Short summary
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024,https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar
Wei Fu, Feng Guo, David Schlipf, and Alfredo Peña
Wind Energ. Sci., 8, 1893–1907, https://doi.org/10.5194/wes-8-1893-2023,https://doi.org/10.5194/wes-8-1893-2023, 2023
Short summary

Cited articles

Al, M.: Feedforward control for wave disturbance rejection on floating offshore wind turbines, MS thesis, Delft University of Technology, Delft, the Netherlands, https://repository.tudelft.nl/record/uuid:8b4851ef-02f7-4c1e-a949-6c7d18371873 (last access: 2 December 2023), 2020. a
Al, M., Fontanella, A., van der Hoek, D., Liu, Y., Belloli, M., and van Wingerden, J. W.: Feedforward control for wave disturbance rejection on floating offshore wind turbines, J. Phys.: Conf. Ser., 1618, 022048, https://doi.org/10.1088/1742-6596/1618/2/022048, 2020. a, b
Arnal, V.: Modélisation expérimentale d'une éolienne flottante par une approche sofware-in-the-loop, PhD thesis, http://www.theses.fr/2020ECDN0037 (last access: 2 December 2023), 2020. a, b
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW reference wind turbine, in: Danish wind power research 2013, https://backend.orbit.dtu.dk/ws/portalfiles/portal/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf (last access: 2 December 2023), 2013. a, b
Becker, S., Saverin, J., Behrens de Luna, R., Papi, F., Combreau, C., Ducasse, M.-L., Marten, D., and Bianchini, A.: FLOATECH D2.2. Validation Report of QBlade-Ocean, Tech. rep., https://www.researchgate.net/publication/364360061_FLOATECH_D22_Validation_Report_of_QBlade-Ocean/stats (last access: 2 December 2023), 2022. a
Download
Short summary
Successful wave tank experiments were conducted to evaluate the feedforward (FF) control strategy benefits in terms of structural loads and power quality of floating wind turbine components. The wave FF control strategy is effective when it comes to alleviating the effects of the wave forces on the floating offshore wind turbines, whereas wave FF control requires a significant amount of actuation to minimize the platform pitch motion, which makes such technology unfavorable for that objective.
Altmetrics
Final-revised paper
Preprint