Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-253-2024
https://doi.org/10.5194/wes-9-253-2024
Research article
 | 
29 Jan 2024
Research article |  | 29 Jan 2024

The wind farm pressure field

Ronald B. Smith

Related authors

Coriolis Recovery of Wind Farm Wakes
Ronald B. Smith and Brian J. Gribben
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-60,https://doi.org/10.5194/wes-2025-60, 2025
Preprint under review for WES
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Simulated meteorological impacts of offshore wind turbines and sensitivity to the amount of added turbulence kinetic energy
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025,https://doi.org/10.5194/wes-10-1269-2025, 2025
Short summary
Evaluating mesoscale model predictions of diurnal speedup events in the Altamont Pass Wind Resource Area of California
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025,https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Swell impacts on an offshore wind farm in stable boundary layer: wake flow and energy budget analysis
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci., 10, 1101–1122, https://doi.org/10.5194/wes-10-1101-2025,https://doi.org/10.5194/wes-10-1101-2025, 2025
Short summary
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025,https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci., 10, 733–754, https://doi.org/10.5194/wes-10-733-2025,https://doi.org/10.5194/wes-10-733-2025, 2025
Short summary

Cited articles

Akhtar, N., Geyer, B., and Schrum, C.: Impacts of accelerating deployment of offshore windfarms on near-surface climate, Sci. Rep., 12, 18307–18323, https://doi.org/10.1038/s41598-022-22868-9, 2022. 
Allaerts, D. and Meyers, J.: Gravity waves and wind-farm efficiency in neutral and stable conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018. 
Allaerts, D. and Meyers, J.: Sensitivity and feedback of wind-farm-induced gravity waves, J. Fluid Mech., 862, 990–1028, https://doi.org/10.1017/jfm.2018.969, 2019. 
Archer, C. L., Vasel-Be-Hagh, A., Yan, C., Wu, S., Pan, Y., Brodie, J. F., and Maguire, A. E.: Review and evaluation of wake loss models for wind energy applications, Appl. Energ., 226, 1187–1207, https://doi.org/10.1016/j.apenergy.2018.05.085, 2018. 
Bleeg, J., Purcell, M., Ruisi, R., and Traiger, E.: Wind Farm Blockage and the Consequences of Neglecting Its Impact on Energy Production, Energies, 11, 1609, https://doi.org/10.3390/en11061609, 2018. 
Download
Short summary
Recent papers have investigated the impact of turbine drag on local wind patterns, but these studies have not given a full explanation of the induced pressure field. The pressure field blocks and deflects the wind and in other ways modifies farm efficiency. Current gravity wave models are complex and provide no estimation tools. We dig deeper into the cause of the pressure field and provide approximate closed-form expressions for pressure field effects.
Share
Altmetrics
Final-revised paper
Preprint