Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-471-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-471-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Flow Physics and Technology, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Delft Center for Systems and Control, Faculty of Mechanical Engineering, Delft University of Technology, Delft, the Netherlands
Sebastiaan Paul Mulders
CORRESPONDING AUTHOR
Delft Center for Systems and Control, Faculty of Mechanical Engineering, Delft University of Technology, Delft, the Netherlands
Roberto Merino-Martinez
Aircraft Noise and Climate Effects, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Simon Watson
Flow Physics and Technology, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Jan-Willem van Wingerden
Delft Center for Systems and Control, Faculty of Mechanical Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Jesse I. S. Hummel, Jens Kober, and Sebastiaan P. Mulders
Wind Energ. Sci., 10, 2005–2023, https://doi.org/10.5194/wes-10-2005-2025, https://doi.org/10.5194/wes-10-2005-2025, 2025
Short summary
Short summary
The variation in wind speed over the rotor plane causes oscillations in the blade, leading to fatigue damage. These oscillations can be reduced with individual pitch control (IPC), at the expense of more blade actuation. This work proposes two output-constrained IPC methods to facilitate the trade-off between load reduction and actuation increase. Both methods can smoothly transition between conventional full IPC action and no IPC action.
Zekai Chen, Aemilius Adrianus Wilhelmus van Vondelen, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-161, https://doi.org/10.5194/wes-2025-161, 2025
Preprint under review for WES
Short summary
Short summary
We studied how to make wind farms generate more energy by improving how turbines interact with each other. When one turbine stands in front of another, it creates a wake that reduces the performance of the one behind. In our work we used LiDAR, a sensor that measures wind, to track the airflow and adjust the front turbine in real time. This helped increase power output while keeping extra strain on the turbines low.
Guido Lazzerini, Jacob Deleuran Grunnet, Tobias Gybel Hovgaard, Fabio Caponetti, Vasu Datta Madireddi, Delphine De Tavernier, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 1303–1327, https://doi.org/10.5194/wes-10-1303-2025, https://doi.org/10.5194/wes-10-1303-2025, 2025
Short summary
Short summary
Large wind turbines face design challenges due to increased flexibility of blades. Conventional control strategies fail under large deformations, impacting performance. We present a feedforward–feedback control scheme, addressing flexibility and overcoming the limitations of conventional strategies. By testing it on a large-scale reference turbine with realistic wind conditions, we demonstrated improvements to power by up to 5 % while constraining blade deflections.
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci., 10, 1167–1185, https://doi.org/10.5194/wes-10-1167-2025, https://doi.org/10.5194/wes-10-1167-2025, 2025
Short summary
Short summary
To guide realistic atmospheric gravity wave simulations, we study flow over a two-dimensional hill and through a wind farm canopy, examining optimal domain size and damping layer setup. Wave properties based on non-dimensional numbers determine the optimal domain and damping parameters. Accurate solutions require the domain length to exceed the effective horizontal wavelength, height, and damping thickness to equal the vertical wavelength and non-dimensional damping strength between 1 and 10.
Ali Eftekhari Milani, Donatella Zappalá, Francesco Castellani, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-62, https://doi.org/10.5194/wes-2025-62, 2025
Revised manuscript under review for WES
Short summary
Short summary
This paper proposes a data-driven approach to simulate wind turbine sensor time series, such as temperature and pressure signals, describing the behaviour of a wind turbine component as it degrades through time up to the failure point. It allows for the simulation of new failure events or the replication of a given failure under different conditions. The results show that the synthetic signals generated using this approach improve the performance of fault detection and prognosis methods.
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 1055–1075, https://doi.org/10.5194/wes-10-1055-2025, https://doi.org/10.5194/wes-10-1055-2025, 2025
Short summary
Short summary
Established turbine wake models are steady-state. This paper presents an open-source dynamic wake modeling framework that complements established steady-state wake models with dynamics. It is advantageous over steady-state wake models to describe wind farm power and energy over shorter periods. The model enables researchers to investigate the effectiveness of wind farm flow control strategies. This leads to a better utilization of wind farms and allows them to be used to their fullest extent.
Atindriyo Kusumo Pamososuryo, Fabio Spagnolo, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 987–1006, https://doi.org/10.5194/wes-10-987-2025, https://doi.org/10.5194/wes-10-987-2025, 2025
Short summary
Short summary
As wind turbines grow in size, measuring wind speed accurately becomes challenging, impacting their performance. Traditional sensors cannot capture wind variations across large rotor areas. To address this, a new method is developed to estimate wind speed accurately, accounting for these variations. Using mid-fidelity simulations, our approach showed better tracking, better noise resilience, and easy tuning for different turbine sizes.
Amr Hegazy, Peter Naaijen, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-68, https://doi.org/10.5194/wes-2025-68, 2025
Preprint under review for WES
Short summary
Short summary
Floating wind turbines face stability issues when traditional onshore control methods are used, due to their motion at sea. This research reviews existing control strategies and introduces a new controller that improves stability without needing extra sensors. Simulations show it outperforms others in maintaining performance and reducing structural stress. The study highlights key trade-offs and the need for smarter, tailored control in offshore wind energy.
Dachuan Feng and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-52, https://doi.org/10.5194/wes-2025-52, 2025
Preprint under review for WES
Short summary
Short summary
Weather effects drive wind turbines loads and performance to be different from those under mean atmospheric conditions. However, the influence of unsteady atmospheric phenomena on wake behavior remains unclear. This paper explores how atmospheric gravity waves—large-scale wave-like patterns caused by topographical features—affect meandering motions and turbulence generation in the wake region. The outputs of this paper can be used to guide wake modeling in realistic atmospheric flows.
Aemilius Adrianus Wilhelmus van Vondelen, Marion Coquelet, Sachin Tejwant Navalkar, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-51, https://doi.org/10.5194/wes-2025-51, 2025
Revised manuscript accepted for WES
Short summary
Short summary
Wind farms suffer energy losses due to wake effects between turbines. We present a new control strategy that synchronizes turbine wakes to enhance power output. By estimating and aligning the phase shifts of periodic wake structures using an advanced filtering method, downstream turbines recover more energy. Simulations show up to 10 % increased power at the third turbine. These results offer a promising path to improving wind farm efficiency while mixing wakes.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet J. R. van Gool, and Roland Schmehl
Wind Energ. Sci., 10, 579–595, https://doi.org/10.5194/wes-10-579-2025, https://doi.org/10.5194/wes-10-579-2025, 2025
Short summary
Short summary
This study investigates noise annoyance caused by airborne wind energy systems (AWESs), a novel wind energy technology that uses kites to harness high-altitude winds. Through a listening experiment with 75 participants, sharpness was identified as the key factor predicting annoyance. Fixed-wing kites generated more annoyance than soft-wing kites, likely due to their sharper, more tonal sound. The findings can help improve AWESs’ designs, reducing noise-related disturbances for nearby residents.
Unai Gutierrez Santiago, Aemilius A. W. van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 207–225, https://doi.org/10.5194/wes-10-207-2025, https://doi.org/10.5194/wes-10-207-2025, 2025
Short summary
Short summary
Knowing the loads applied to wind turbine gearboxes throughout their service life is becoming increasingly important as maintaining reliability with higher torque density demands is proving to be challenging. Operational deflection shapes identified from fiber-optic strain measurements have enabled the estimation of input torque, improving the assessment of the consumed life. Tracking operational deflection shapes recursively over time can potentially be used as an indicator of fault detection.
Oriol Cayon, Simon Watson, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-182, https://doi.org/10.5194/wes-2024-182, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study demonstrates how kites used to generate wind energy can act as sensors to measure wind conditions and system behaviour. By combining data from existing sensors, such as those measuring position, speed, and forces on the tether, a sensor fusion technique accurately estimates wind conditions and kite performance. This approach can be integrated into control systems to help optimise energy generation and enhance the reliability of these systems in changing wind conditions.
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149, https://doi.org/10.5194/wes-2024-149, 2025
Publication in WES not foreseen
Short summary
Short summary
This paper presents the findings of a study aimed at describing the flow system downstream of a wind turbine operated with a novel control technology. Results from heavy high-fidelity simulations are used to obtain a low-fidelity model that is quick enough to be used for the optimization of such technologies. Additionally, we were able to retrieve an improved understanding of the physics of such systems under different inflow conditions.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024, https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary
Short summary
Wake steering can be integrated into wind farm layout optimization through a co-design approach. This study estimates the potential of this method for a wide range of realistic conditions, adopting a tailored genetic algorithm and novel geometric yaw relations. A gain in the annual energy yield between 0.3 % and 0.4 % is obtained for a 16-tubrine farm, and a multi-objective implementation is used to limit loss in the case that wake steering is not used during farm operation.
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci., 9, 1923–1940, https://doi.org/10.5194/wes-9-1923-2024, https://doi.org/10.5194/wes-9-1923-2024, 2024
Short summary
Short summary
An extended Kalman filter is used to estimate the wind impinging on a wind turbine based on the blade bending moments and a turbine model. Using large-eddy simulations, this paper verifies how robust the estimator is to the turbine control strategy as it impacts loads and operating parameters. It is shown that including dynamics in the turbine model to account for delays between actuation and bending moments is needed to maintain the accuracy of the estimator when dynamic pitch control is used.
Amr Hegazy, Peter Naaijen, Vincent Leroy, Félicien Bonnefoy, Mohammad Rasool Mojallizadeh, Yves Pérignon, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 1669–1688, https://doi.org/10.5194/wes-9-1669-2024, https://doi.org/10.5194/wes-9-1669-2024, 2024
Short summary
Short summary
Successful wave tank experiments were conducted to evaluate the feedforward (FF) control strategy benefits in terms of structural loads and power quality of floating wind turbine components. The wave FF control strategy is effective when it comes to alleviating the effects of the wave forces on the floating offshore wind turbines, whereas wave FF control requires a significant amount of actuation to minimize the platform pitch motion, which makes such technology unfavorable for that objective.
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024, https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Short summary
Wind turbine wakes negatively affect wind farm performance as they impinge on downstream rotors. Wake steering reduces these losses by redirecting wakes using yaw misalignment of the upstream rotor. We develop a novel control strategy based on model predictions to implement wake steering under time-varying conditions. The controller is tested in a high-fidelity simulation environment and improves wind farm power output compared to a state-of-the-art reference controller.
Maarten J. van den Broek, Delphine De Tavernier, Paul Hulsman, Daan van der Hoek, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1909–1925, https://doi.org/10.5194/wes-8-1909-2023, https://doi.org/10.5194/wes-8-1909-2023, 2023
Short summary
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Serkan Kartal, Sukanta Basu, and Simon J. Watson
Wind Energ. Sci., 8, 1533–1551, https://doi.org/10.5194/wes-8-1533-2023, https://doi.org/10.5194/wes-8-1533-2023, 2023
Short summary
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Sarah J. Ollier and Simon J. Watson
Wind Energ. Sci., 8, 1179–1200, https://doi.org/10.5194/wes-8-1179-2023, https://doi.org/10.5194/wes-8-1179-2023, 2023
Short summary
Short summary
This modelling study shows that topographic trapped lee waves (TLWs) modify flow behaviour and power output in offshore wind farms. We demonstrate that TLWs can substantially alter the wind speeds at individual wind turbines and effect the power output of the turbine and whole wind farm. The impact on wind speeds and power is dependent on which part of the TLW wave cycle interacts with the wind turbines and wind farm. Positive and negative impacts of TLWs on power output are observed.
Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 849–864, https://doi.org/10.5194/wes-8-849-2023, https://doi.org/10.5194/wes-8-849-2023, 2023
Short summary
Short summary
Wind turbines placed in farms interact with their wake, lowering the power production of the wind farm. This can be mitigated using so-called wake mixing techniques. This work investigates the coupling between the pulse wake mixing technique and the motion of floating wind turbines using the pulse. Frequency response experiments and time domain simulations show that extra movement is undesired and that the
optimalexcitation frequency is heavily platform dependent.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Daan van der Hoek, Joeri Frederik, Ming Huang, Fulvio Scarano, Carlos Simao Ferreira, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 1305–1320, https://doi.org/10.5194/wes-7-1305-2022, https://doi.org/10.5194/wes-7-1305-2022, 2022
Short summary
Short summary
The paper presents a wind tunnel experiment where dynamic induction control was implemented on a small-scale turbine. By periodically changing the pitch angle of the blades, the low-velocity turbine wake is perturbed, and hence it recovers at a faster rate. Small particles were released in the flow and subsequently recorded with a set of high-speed cameras. This allowed us to reconstruct the flow behind the turbine and investigate the effect of dynamic induction control on the wake.
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022, https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
Short summary
The objective of the paper is to develop a data-driven output-constrained individual pitch control approach, which will not only mitigate the blade loads but also reduce the pitch activities. This is achieved by only reducing the blade loads violating a user-defined bound, which leads to an economically viable load control strategy. The proposed control strategy shows promising results of load reduction in the wake-rotor overlapping and turbulent sheared wind conditions.
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022, https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
Short summary
The gearbox is one of the main contributors to the overall cost of wind energy, and it is acknowledged that we still do not fully understand its loading. The study presented in this paper develops a new alternative method to measure input rotor torque in wind turbine gearboxes, overcoming the drawbacks related to measuring on a rotating shaft. The method presented in this paper could make measuring gearbox torque more cost-effective, which would facilitate its adoption in serial wind turbines.
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022, https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Short summary
This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the energy conversion systems transferring the kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps.
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022, https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
Short summary
The damping of an offshore wind turbine is a difficult physical quantity to predict, although it plays a major role in a cost-effective turbine design. This paper presents a review of all approaches that can be used for damping estimation directly from operational wind turbine data. As each use case is different, a novel suitability table is presented to enable the user to choose the most appropriate approach for the given availability and characteristics of measurement data.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Bedassa R. Cheneka, Simon J. Watson, and Sukanta Basu
Wind Energ. Sci., 5, 1731–1741, https://doi.org/10.5194/wes-5-1731-2020, https://doi.org/10.5194/wes-5-1731-2020, 2020
Short summary
Short summary
Wind power ramps have important characteristics for the planning and integration of wind power production into electricity. We present a new and simple algorithm that detects wind power ramp characteristics. The algorithm classifies wind power production into ramp-ups, ramp-downs, and no-ramps; and it can detect wind power ramp characteristics that show a temporal increasing (decreasing) power capacity.
Cited articles
Afshari, A., Mojahed, M., and Yusuff, R.: Simple Additive Weighting Approach to Personnel Selection Problem, International Journal of Innovation, Management and Technology, 1, 511–515, 2010. a
Aures, W.: Procedure for calculating the sensory euphony of arbitrary sound signal [Berechnungsverfahren für den sensorischen Wohlklang beliebiger Schallsignale], Acustica, 59, 130–141, 1985. a
Bagočius, V., Zavadskas, E. K., and Turskis, Z.: Multi-person selection of the best wind turbine based on the multi-criteria integrated additive-multiplicative utility function, J. Civ. Eng. Manag., 20, 590–599, https://doi.org/10.3846/13923730.2014.932836, 2014. a
Balduzzi, F., Bianchini, A., Carnevale, E. A., Ferrari, L., and Magnani, S.: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building, Appl. Energ., 97, 921–929, https://doi.org/10.1016/j.apenergy.2011.12.008, 2012. a, b
Bergami, L. and Gauanaa, M.: ATEFlap Aerodynamic Model: A Dynamic Stall Model Including the Effects of Trailing Edge Flap Deflection, Tech. rep., Technical University of Denmark, https://backend.orbit.dtu.dk/ws/portalfiles/portal/6599679/ris-r-1792.pdf (last access: 10 January 2024), 2012. a
Bianchini, A., Balduzzi, F., Rainbird, J. M., Peiro, J., Graham, J. M. R., Ferrara, G., and Ferrari, L.: An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines–Part I: Flow Curvature Effects, J. Eng. Gas Turb. Power, 138, 032602, https://doi.org/10.1115/1.4031269, 2015. a
Bianchini, A., Bangga, G., Baring-Gould, I., Croce, A., Cruz, J. I., Damiani, R., Erfort, G., Simao Ferreira, C., Infield, D., Nayeri, C. N., Pechlivanoglou, G., Runacres, M., Schepers, G., Summerville, B., Wood, D., and Orrell, A.: Current status and grand challenges for small wind turbine technology, Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022, 2022. a, b, c
Bonaccorso, F., Scelba, G., Consoli, A., and Muscato, G.: EKF – based MPPT control for vertical axis wind turbines, in: IECON 2011 – 37th Annual Conference of the IEEE Industrial Electronics Society, 7–10 November 2011, Melbourne, VIC, Australia, 3614–3619, https://doi.org/10.1109/IECON.2011.6119896, 2011. a, b
Bossanyi, E. A.: The design of closed-loop controllers for wind turbines, Wind Energy, 3, 149–163, https://doi.org/10.1002/we.34, 2000. a, b, c
Botha, J. D. M., Shahroki, A., and Rice, H.: An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology, J. Sound Vib., 410, 389–415, https://doi.org/10.1016/j.jsv.2017.08.038, 2017. a
Brandetti, L.: Codes, data and plots underlying the publication: Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise, Version 1, 4TU.ResearchData [code and data set], https://doi.org/10.4121/34b8d260-049a-4f7c-b3cd-60f1f4019696, 2024. a
Brandetti, L. and van den Berg, D.: QBlade 2.0.5.2 Matlab Tutorial, Tech. rep., https://doi.org/10.4121/22134710, 2023. a
Brandetti, L., Liu, Y., Mulders, S. P., Ferreira, C., Watson, S., and van Wingerden, J. W.: On the ill-conditioning of the combined wind speed estimator and tip-speed ratio tracking control scheme, J. Phys. Conf. Ser., 2265, 032085, https://doi.org/10.1088/1742-6596/2265/3/032085, 2022. a
Brandetti, L., Avallone, F., De Tavernier, D., LeBlanc, B., Simão Ferreira, C., and Casalino, D.: Assessment through high-fidelity simulations of a low-fidelity noise prediction tool for a vertical-axis wind turbine, J. Sound Vib., 547, 117486, https://doi.org/10.1016/j.jsv.2022.117486, 2023a. a, b, c, d, e
Brooks, T. F. and Burley, C. L.: Rotor broadband noise prediction with comparison to model data, J. Am. Helicopter Soc., 49, 28–42, 2004. a
Burton, T., Jenkings, N., Sharpe, D., and Bossanyi, E. A.: Wind Energy Handbook, John Wiley & Sons, Ltd, ISBN 9781119992714, https://doi.org/10.1002/9781119992714, 2001. a
Clifton-Smith, M. J.: Aerodynamic Noise Reduction for Small Wind Turbine Rotors, Wind Eng., 34, 403–420, https://doi.org/10.1260/0309-524X.3.4.403, 2010. a
Daniel, P. and Webber, R.: Psychoacoustical Roughness: Implementation of an Optimized Model, Acustica, 83, 113–23, 1997. a
Dayan, E.: Wind energy in buildings: Power generation from wind in the urban environment – where it is needed most, Refocus, 7, 33–38, https://doi.org/10.1016/S1471-0846(06)70545-5, 2006. a
De Tavernier, D. M. A.: Aerodynamic advances in vertical-axis wind turbines, PhD thesis, TU Delft, Delft, https://doi.org/10.4233/uuid:7086f01f-28e7-4e1b-bf97-bb3e38dd22b9, 2021. a, b
Di, G. Q., Chen, X. W., Song, K., Zhou, B., and Pei, C. M.: Improvement of Zwicker's psychoacoustic annoyance model aiming at tonal noises, Appl. Acoust., 105, 164–170, https://doi.org/10.1016/j.apacoust.2015.12.006, 2016. a, b, c
Eriksson, S., Bernhoff, H., and Leijon, M.: Evaluation of different turbine concepts for wind power, Renew. Sust. Energ. Rev., 12, 1419–1434, https://doi.org/10.1016/j.rser.2006.05.017, 2008. a, b
Eriksson, S., Kjellin, J., and Bernhoff, H.: Tip speed ratio control of a 200 kW VAWT with synchronous generator and variable DC voltage, Energy Sci. Eng., 1, 135–143, https://doi.org/10.1002/ese3.23, 2013. a
Fastl, H. and Zwicker, E.: Psychoacoustics – Facts and models, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-68888-4, 2007. a, b
Gambier, A.: Multiobjective Optimal Control of Wind Turbines: A Survey on Methods and Recommendations for the Implementation, Energies, 15, 567, https://doi.org/10.3390/en15020567, 2022. a
Greco, G. F., Merino-Martínez, R., and Osses, A.: SQAT: a MATLAB-based toolbox for quantitative sound quality analysis, in: Inter-Noise 2023: 52nd International Congress and Exposition on Noise Control Engineering Location of Conference, 20—23 August 2023, Chiba, Japan, 12 pp., https://doi.org/10.3397/IN_2023_1075, 2023a. a, b
Greco, G. F., Merino-Martínez, R., and Osses, A.: SQAT: a sound quality analysis toolbox for MATLAB, https://doi.org/10.5281/zenodo.7934709, 2023b. a, b
Haque, M. E., Negnevitsky, M., and Muttaqi, K. M.: A Novel Control Strategy for a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator, in: 2008 IEEE Industry Applications Society Annual Meeting, 5–9 October 2008, Edmonton, AB, Canada, 1–8, https://doi.org/10.1109/08IAS.2008.374, 2008. a
Holley, W., Rock, S., and Chaney, K.: Control of variable speed wind turbines below-rated wind speed, Proceedings of the 3rd ASME/JSME Conference, ASME/JSME, 18–23 July 1999, San Francisco, California, USA, https://search.worldcat.org/title/42269277 2023 (last access: 15 September 2023), 1999. a
Howell, R., Qin, N., Edwards, J., and Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine, Renew. Energ., 35, 412–422, https://doi.org/10.1016/j.renene.2009.07.025, 2010. a
Hutchinson, M. and Zhao, F.: Global Wind Report 2023, Tech. rep., https://gwec.net/wp-content/uploads/2023/03/GWR-2023_interactive_v2_compressed.pdf (last access: 15 June 2023), 2023. a
International Organization for Standardization: ISO norm 532–1 – Acoustics – Method for calculating loudness – Zwicker method, Tech. rep., https://www.iso.org/obp/ui/en/#iso:std:iso:532:-1:ed-1:v2:en (last access: 28 December 2023), 2017. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5 MW Reference Wind Turbine for Offshore System Development, Tech. rep., NREL/TP-500-38060, NREL, https://www.nrel.gov/docs/fy09osti/38060.pdf (last access: 18 May 2023), 2009. a
Khan, M., Alavi, M., Mohan, N., Azeez, A., Shanif, A., and Javed, B.: Wind Turbine design and fabrication to power street lights, in: vol. 108, 25–27 February 2017, Malacca, Malaysia, https://doi.org/10.1051/matecconf/201710808010, 2017. a
Kim, J. W., Haeri, S., and Joseph, P. F.: On the reduction of aerofoil-turbulence interaction noise associated with wavy leading edges, J. Fluid Mech., 792, 526–552, https://doi.org/10.1017/jfm.2016.95, 2016. a
Klok, C. W., Kirkels, A. F., and Alkemade, F.: Impacts, procedural processes, and local context: Rethinking the social acceptance of wind energy projects in the Netherlands, Energy Research & Social Science, 99, 103044, https://doi.org/10.1016/j.erss.2023.103044, 2023. a
Lao, Y., Rotea, M. A., Koeln, J. P., Sakib, M. S., and Griffith, D. T.: Economic Nonlinear Model Predictive Control of Offshore Vertical-Axis Wind Turbines, 2022 American Control Conference (ACC), 8–10 June 2022, Atlanta, GA, USA, 3518–3525, https://doi.org/10.23919/ACC53348.2022.9867846, 2022. a
Lara, M., Garrido, J., Ruz, M. L., and Vázquez, F.: Multi-objective optimization for simultaneously designing active control of tower vibrations and power control in wind turbines, Energy Reports, 9, 1637–1650, https://doi.org/10.1016/j.egyr.2022.12.141, 2023a. a, b, c
Lara, M., Garrido, J., van Wingerden, J. W., Mulders, S. P., and Vázquez, F.: Optimization with genetic algorithms of individual pitch control design with and without azimuth offset for wind turbines in the full load region, in: 22nd IFAC World Congress, 9–14 July 2023, Yokohama, Japan, 375–380, https://doi.org/10.1016/j.ifacol.2023.10.1591, 2023b. a
LeBlanc, B. and Simão Ferreira, C.: Estimation of blade loads for a variable pitch vertical axis wind turbine from particle image velocimetry, Wind Energy, 25, 313–332, https://doi.org/10.1002/we.2674, 2021. a, b, c, d
LeBlanc, B. and Simão Ferreira, C.: Estimation of blade loads for a variable pitch Vertical Axis Wind Turbine with strain gage measurements, Wind Energy, 25, 1030–1045, https://doi.org/10.1002/we.2713, 2022. a
Lee, H.-C. and Chang, C.-T.: Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan, Renew. Sust. Energ. Rev., 92, 883–896, https://doi.org/10.1016/j.rser.2018.05.007, 2018. a
Leishman, J. and Beddoes, T.: A Semi-Empirical Model for Dynamic Stall, J. Am. Helicopter Soc., 34, 3–17, https://doi.org/10.4050/JAHS.34.3.3, 1989. a
Liu, Y., Pamososuryo, A. K., Ferrari, R. M. G., and van Wingerden, J. W.: The Immersion and Invariance Wind Speed Estimator Revisited and New Results, IEEE Control Systems Letters, 6, 361–366, https://doi.org/10.1109/LCSYS.2021.3076040, 2022. a
Lowson, M. V. and Ollerhead, J. B.: A theoretical study of helicopter noise, J. Sound Vib., 9, 197–222, 1969. a
Lukovic, M. K., Tian, Y., and Matusik, W.: Diversity-guided multi-objective Bayesian optimization with batch evaluations, in: 34th Conference on Neural Information Processing Systems, 6–12 December 2020, Vancouver, Canada, https://proceedings.neurips.cc/paper_files/paper/2020/file/cd3109c63bf4323e6b987a5923becb96-Paper.pdf (last access: 31 August 2023), 2020. a, b
Madsen, H. A.: The Actuator Cylinder – A Flow Model for Vertical Axis Wind Turbines, PhD thesis, https://doi.org/10.13140/RG.2.1.2512.3040, 1982. a
Maillard, J., Bresciani, A. P. C., and Finez, A.: Perceptual validation of wind turbine noise auralization, in: Proceedings of the 10th Convention of the European Acoustics Association (Forum Acusticum), 11–15 September 2023, Turin, Italy, https://doi.org/10.61782/fa.2023.0444, 2023. a, b
Marten, D., Saverin, J., Behrens de Luna, R., and Perez-Becker, S.: QBlade documentation, Tech. rep., https://docs.qblade.org/ (last access: 27 December 2023), 2021. a
Mertens, S., van Kuik, G., and van Bussel, G.: Performance of an H-Darrieus in the Skewed Flow on a Roof, J. Sol. Energ.-T. ASME, 125, 433–440, https://doi.org/10.1115/1.1629309, 2003. a
Miettinen, K.: Nonlinear multiobjective optimization, Springer, https://doi.org/10.1007/978-1-4615-5563-6, 1999. a
Montgomerie, B.: Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to 6180, With Application to Aerodynamics for Blades on Wind Turbines and Propellers, Tech. rep., Swedish Defence Research Agency, https://www.foi.se/rest-api/report/FOI-R--1305--SE (last access: 20 August 2023), 2004. a
Moriarty, P. and Migliore, P.: Semi-Empirical Aeroacoustic Noise Prediction Code for Wind Turbines, Tech. rep., NREL – National Renewable Energy Laboratory, https://www.nrel.gov/docs/fy04osti/34478.pdf (last access: 30 December 2023), 2003. a
Moustakis, N., Mulders, S. P., Kober, J., and van Wingerden, J. W.: A Practical Bayesian Optimization Approach for the Optimal Estimation of the Rotor Effective Wind Speed, in: 2019 American Control Conference (ACC), 10–12 July 2019, Philadelphia, PA, USA, 4179–4185, https://doi.org/10.23919/ACC.2019.8814622, 2019. a
Odgaard, P. F., Larsen, L. F. S., Wisniewski, R., and Hovgaard, T. G.: On using Pareto optimality to tune a linear model predictive controller for wind turbines, Renew. Energ., 87, 884–891, https://doi.org/10.1016/j.renene.2015.09.067, 2016. a
Ortega, R., Mancilla-David, F., and Jaramillo, F.: A globally convergent wind speed estimator for wind turbine systems, Int. J. Adapt. Control, 27, 413–425, https://doi.org/10.1002/acs.2319, 2013. a
Osses Vecchi, A., García León, R., and Kohlrausch, A.: Modelling the sensation of fluctuation strength, in: vol. 28 of Proceedings of Meetings on Acoustics, 5–9 September 2016, Buenos Aires, Brazil, https://doi.org/10.1121/2.0000410, 2016. a
Østergaard, K. Z., Brath, P., and Stoustrup, J.: Estimation of effective wind speed, J. Phys. Conf. Ser., 75, 012082, https://doi.org/10.1088/1742-6596/75/1/012082, 2007. a
Papi, F., Nocentini, A., Ferrara, G., and Bianchini, A.: On the Use of Modern Engineering Codes for Designing a Small Wind Turbine: An Annotated Case Study, Energies, 14, 1013, https://doi.org/10.3390/en14041013, 2021. a
Pieren, R., Heutschi, K., Müller, M., Manyoky, M., and Eggenschwiler, K.: Auralization of Wind Turbine Noise: Emission Synthesis, Acta Acust. United Ac., 100, 25–33, https://doi.org/10.3813/AAA.918683, 2014. a
Pieren, R., Bertsch, L., Lauper, D., and Schäffer, B.: Improving Future Low-noise Aircraft Technologies Using Experimental Perception-Based Evaluation of Synthetic Flyovers, Sci. Total Environ., 692, 68–81, https://doi.org/10.1016/j.scitotenv.2019.07.253, 2019. a, b
Poulsen, A. H., Raaschou-Nielsen, O., Peña, A., Hahmann, A. N., Nordsborg, R. B., Ketzel, M., Brandt, J., and Sørensen, M.: Impact of Long-Term Exposure to Wind Turbine Noise on Redemption of Sleep Medication and Antidepressants: A Nationwide Cohort Study, Environ. Health Persp., 127, 037005, https://doi.org/10.1289/EHP3909, 2019. a
Pourrajabian, A., Rahgozar, S., Dehghan, M., and Wood, D.: A comprehensive multi-objective optimization study for the aerodynamic noise mitigation of a small wind turbine, Eng. Anal. Bound. Elem., 155, 553–564, https://doi.org/10.1016/j.enganabound.2023.06.035, 2023. a
Ramirez, L.: Offshore wind energy: 2023 statistics, Tech. rep., https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2022/ (last access: 15 August 2023), 2023. a
Rogers, A. L., Manwell, J. F., and Wright, S.: Wind turbine acoustic noise, Tech. rep., https://doi.org/10.1260/0957456042872777, 2006. a, b
Ruijgrok, G. J. J.: Elements of Aviation Acoustics, Cambridge University Press, https://doi.org/10.1017/S0001924000027056, 1993. a
Santín, I., Pedret, C., and Vilanova, R.: Control and Decision Strategies in Wastewater Treatment Plants for Operation Improvement, Intelligent Systems, Springer, https://doi.org/10.1007/978-3-319-46367-4, 2017. a
Sessarego, M. and Wood, D.: Multi-dimensional optimization of small wind turbine blades, Renewables: Wind, Water, and Solar, 9, 9, https://doi.org/10.1186/s40807-015-0009-x, 2015. a
Simão Ferreira, C. J., van Kuik, G., van Bussel, G., and Scarano, F.: Visualization by PIV of dynamic stall on a vertical axis wind turbine, Exp. Fluids, 97–108, https://doi.org/10.1007/s00348-008-0543-z, 2009. a
Soltani, M. N., Knudsen, T., Svenstrup, M., Wisniewski, R., Brath, P., Ortega, R., and Johnson, K.: Estimation of rotor effective wind speed: A comparison, IEEE T. Contr. Syst. T., 21, 1155–1167, https://doi.org/10.1109/TCST.2013.2260751, 2013. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Rodrigo, J. S., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, 6464, https://doi.org/10.1126/science.aau2027, 2019. a, b
von Bismarck, G.: Sharpness as an attribute of the timbre of steady sounds, Acustica, 30, 159–172, 1974. a
Vorländer, M.: Auralization – Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, Springer, ISBN 978-3-540-48830-9, https://doi.org/10.1007/978-3-540-48830-9, 2008. a, b, c
Wang, P., Zhu, Z., and Wang, Y.: A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design, Inform. Sciences, 345, 27–45, https://doi.org/10.1016/j.ins.2016.01.076, 2016. a, b, c
Watson, S., Moro, A., Reis, V., Baniotopoulos, C., Barth, S., Bartoli, G., Bauer, F., Boelman, E., Bosse, D., Cherubini, A., Croce, A., Fagiano, L., Fontana, M., Gambier, A., Gkoumas, K., Golightly, C., Latour, M. I., Jamieson, P., Kaldellis, J., Macdonald, A., Murphy, J., Muskulus, M., Petrini, F., Pigolotti, L., Rasmussen, F., Schild, P., Schmehl, R., Stavridou, N., Tande, J., Taylor, N., Telsnig, T., and Wiser, R.: Future emerging technologies in the wind power sector: A European perspective, Renew. Sust. Energ. Rev., 113, 109270, https://doi.org/10.1016/j.rser.2019.109270, 2019. a, b, c
Short summary
This research presents a multi-objective optimisation approach to balance vertical-axis wind turbine (VAWT) performance and noise, comparing the combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking controller with a baseline. Psychoacoustic annoyance is used as a novel metric for human perception of wind turbine noise. Results showcase the WSE–TSR tracking controller’s potential in trading off the considered objectives, thereby fostering the deployment of VAWTs in urban areas.
This research presents a multi-objective optimisation approach to balance vertical-axis wind...
Altmetrics
Final-revised paper
Preprint