Articles | Volume 10, issue 2
https://doi.org/10.5194/wes-10-435-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-435-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby
CORRESPONDING AUTHOR
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Takafumi Nishino
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Luca Lanzilao
Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300 – 3001 Leuven, Belgium
Thomas D. Dunstan
Met Office, FitzRoy Road, Exeter EX1 3PB, UK
Johan Meyers
Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300 – 3001 Leuven, Belgium
Related authors
No articles found.
Olivier Ndindayino, Augustin Puel, and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-6, https://doi.org/10.5194/wes-2025-6, 2025
Preprint under review for WES
Short summary
Short summary
Our aim is to understand the relationship between flow blockage and improved wind farm efficiency using large-eddy simulations, as well as developing an analytical model that shows promise for improving turbine power predictions under blockage. We found that blockage enhances turbine power and thrust by inducing a favourable pressure drop across the turbine row, while simultaneously inducing an unfavourable pressure increase downstream which has minimal direct impact on far wake development.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Théo Delvaux and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-110, https://doi.org/10.5194/wes-2024-110, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The work explores the potential for wind farm load reduction and power maximization. We carried out a series of high-fidelity wind farm simulations (LES) for a wide variety of atmospheric conditions and operating regimes. Because of turbine-scale interactions and large-scale effects, we observed that the optimal wind farm operating point is reached at lower regimes. Therefore, we proposed three simple approaches with which thrust significantly decreases with only limited impact on power.
Jens Peter K. W. Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-137, https://doi.org/10.5194/gmd-2024-137, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known `anomalous’ event.
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 1695–1711, https://doi.org/10.5194/wes-9-1695-2024, https://doi.org/10.5194/wes-9-1695-2024, 2024
Short summary
Short summary
In our study, we assess how mesoscale weather systems influence wind speed variations and their impact on offshore wind energy production fluctuations. We have observed, for instance, that weather systems originating over land lead to sea wind speed variations. Additionally, we noted that power fluctuations are typically more significant in summer, despite potentially larger winter wind speed variations. These findings are valuable for grid management and optimizing renewable energy deployment.
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024, https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Short summary
Wind farms at sea are becoming more densely clustered, which means that next to individual wind turbines interfering with each other in a single wind farm also interference between wind farms becomes important. Using a climate model, this study shows that the efficiency of wind farm clusters and the interference between the wind farms in the cluster depend strongly on the properties of the individual wind farms and are also highly sensitive to the spacing between the wind farms.
Nick Janssens and Johan Meyers
Wind Energ. Sci., 9, 65–95, https://doi.org/10.5194/wes-9-65-2024, https://doi.org/10.5194/wes-9-65-2024, 2024
Short summary
Short summary
Proper wind farm control may vastly contribute to Europe's plan to go carbon neutral. However, current strategies don't account for turbine–wake interactions affecting power extraction. High-fidelity models (e.g., LES) are needed to accurately model this but are considered too slow in practice. By coarsening the resolution, we were able to design an efficient LES-based controller with real-time potential. This may allow us to bridge the gap towards practical wind farm control in the near future.
Ishaan Sood, Elliot Simon, Athanasios Vitsas, Bart Blockmans, Gunner C. Larsen, and Johan Meyers
Wind Energ. Sci., 7, 2469–2489, https://doi.org/10.5194/wes-7-2469-2022, https://doi.org/10.5194/wes-7-2469-2022, 2022
Short summary
Short summary
In this work, we conduct a validation study to compare a numerical solver against measurements obtained from the offshore Lillgrund wind farm. By reusing a previously developed inflow turbulent dataset, the atmospheric conditions at the wind farm were recreated, and the general performance trends of the turbines were captured well. The work increases the reliability of numerical wind farm solvers while highlighting the challenges of accurately representing large wind farms using such solvers.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Konstanze Kölle, Tuhfe Göçmen, Irene Eguinoa, Leonardo Andrés Alcayaga Román, Maria Aparicio-Sanchez, Ju Feng, Johan Meyers, Vasilis Pettas, and Ishaan Sood
Wind Energ. Sci., 7, 2181–2200, https://doi.org/10.5194/wes-7-2181-2022, https://doi.org/10.5194/wes-7-2181-2022, 2022
Short summary
Short summary
The paper studies wind farm flow control (WFFC) in simulations with variable electricity prices. The results indicate that considering the electricity price in the operational strategy can be beneficial with respect to the gained income compared to focusing on the power gain only. Moreover, revenue maximization by balancing power production and structural load reduction is demonstrated at the example of a single wind turbine.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Koen Devesse, Luca Lanzilao, Sebastiaan Jamaer, Nicole van Lipzig, and Johan Meyers
Wind Energ. Sci., 7, 1367–1382, https://doi.org/10.5194/wes-7-1367-2022, https://doi.org/10.5194/wes-7-1367-2022, 2022
Short summary
Short summary
Recent research suggests that offshore wind farms might form such a large obstacle to the wind that it already decelerates before reaching the first turbines. Part of this phenomenon could be explained by gravity waves. Research on these gravity waves triggered by mountains and hills has found that variations in the atmospheric state with altitude can have a large effect on how they behave. This paper is the first to take the impact of those vertical variations into account for wind farms.
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022, https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Short summary
In this work, we study parks of large-scale airborne wind energy systems using a virtual flight simulator. The virtual flight simulator combines numerical techniques from flow simulation and kite control. Using advanced control algorithms, the systems can operate efficiently in the park despite turbulent flow conditions. For the three configurations considered in the study, we observe significant wake effects, reducing the power yield of the parks.
Luca Lanzilao and Johan Meyers
Wind Energ. Sci., 6, 247–271, https://doi.org/10.5194/wes-6-247-2021, https://doi.org/10.5194/wes-6-247-2021, 2021
Short summary
Short summary
This research paper investigates the potential of thrust set-point optimization in large wind farms for mitigating gravity-wave-induced blockage effects for the first time, with the aim of increasing the wind-farm energy extraction. The optimization tool is applied to almost 2000 different atmospheric states. Overall, power gains above 4 % are observed for 77 % of the cases.
Wim Munters and Johan Meyers
Wind Energ. Sci., 3, 409–425, https://doi.org/10.5194/wes-3-409-2018, https://doi.org/10.5194/wes-3-409-2018, 2018
Short summary
Short summary
Wake interactions in wind farms result in power losses for downstream turbines. We aim to mitigate these losses through coordinated control of the induced slowdown of the wind by each turbine. We further analyze results from earlier work towards the utilization of such control strategies in practice. Coherent vortex shedding is identified and mimicked by a sinusoidal control. The latter is shown to increase power in downstream turbines and is robust to turbine spacing and turbulence intensity.
Sjoerd Boersma, Bart Doekemeijer, Mehdi Vali, Johan Meyers, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, https://doi.org/10.5194/wes-3-75-2018, 2018
Short summary
Short summary
Controlling the flow within wind farms to reduce the fatigue loads and provide grid facilities such as the delivery of a demanded power is a challenging control problem due to the underlying time-varying non-linear wake dynamics. In this paper, a control-oriented dynamical wind farm model is presented and validated with high-fidelity wind farm models. In contrast to the latter models, the model presented in this work is computationally efficient and hence suitable for online wind farm control.
Carl R. Shapiro, Johan Meyers, Charles Meneveau, and Dennice F. Gayme
Wind Energ. Sci., 3, 11–24, https://doi.org/10.5194/wes-3-11-2018, https://doi.org/10.5194/wes-3-11-2018, 2018
Short summary
Short summary
We investigate the capability of wind farms to track a power reference signal to help ensure reliable power grid operations. The wind farm controller is based on a simple dynamic wind farm model and tested using high-fidelity simulations. We find that the dynamic nature of the wind farm model is vital for tracking the power signal, and the controlled wind farm would pass industry performance tests in most cases.
Vahid S. Bokharaie, Pieter Bauweraerts, and Johan Meyers
Wind Energ. Sci., 1, 311–325, https://doi.org/10.5194/wes-1-311-2016, https://doi.org/10.5194/wes-1-311-2016, 2016
Short summary
Short summary
Given a wind farm with known dimensions and number of wind turbines, we try to find the optimum positioning of wind turbines that maximises wind-farm energy production. We propose an optimisation approach that is based on a hybrid combination of large-eddy simulation (LES) and the Jensen model; in this approach optimisation is mainly performed using the Jensen model, and LES is used at a few points only during optimisation for online tuning of the Jensen model.
Related subject area
Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Proof of concept for multirotor systems with vortex-generating modes for regenerative wind energy: a study based on numerical simulations and experimental data
Spatial development of planar and axisymmetric wakes of porous objects under a pressure gradient: a wind tunnel study
Numerical Investigation of Regenerative Wind Farms Featuring Enhanced Vertical Energy Entrainment
Direct integration of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer effects
Convergence and efficiency of global bases using proper orthogonal decomposition for capturing wind turbine wake aerodynamics
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Improvements to the dynamic wake meandering model by incorporating the turbulent Schmidt number
An actuator sector model for wind power applications: a parametric study
Wind tunnel investigations of an individual pitch control strategy for wind farm power optimization
The near-wake development of a wind turbine operating in stalled conditions – Part 1: Assessment of numerical models
Data-driven optimisation of wind farm layout and wake steering with large-eddy simulations
Floating wind turbine motion signature in the far-wake spectral content – a wind tunnel experiment
Breakdown of the velocity and turbulence in the wake of a wind turbine – Part 1: Large-eddy-simulation study
Breakdown of the velocity and turbulence in the wake of a wind turbine – Part 2: Analytical modelling
Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects
A method to correct for the effect of blockage and wakes on power performance measurements
Vortex model of the aerodynamic wake of airborne wind energy systems
A new RANS-based wind farm parameterization and inflow model for wind farm cluster modeling
Investigating energy production and wake losses of multi-gigawatt offshore wind farms with atmospheric large-eddy simulation
The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data
Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems
Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model
Actuator line model using simplified force calculation methods
Brief communication: A clarification of wake recovery mechanisms
Predictive and stochastic reduced-order modeling of wind turbine wake dynamics
Wind turbine wake simulation with explicit algebraic Reynolds stress modeling
Including realistic upper atmospheres in a wind-farm gravity-wave model
Flavio Avila Correia Martins, Alexander van Zuijlen, and Carlos Simão Ferreira
Wind Energ. Sci., 10, 41–58, https://doi.org/10.5194/wes-10-41-2025, https://doi.org/10.5194/wes-10-41-2025, 2025
Short summary
Short summary
This study examines regenerative wind farming with multirotor systems fitted with atmospheric boundary layer control (ABL-control) wings near the rotor's wake. These wings create vortices that boost vertical momentum transfer and speed up wake recovery. Results show that ABL-control wings can restore 95 % of wind power within six rotor diameters downstream, achieving a recovery rate nearly 10 times faster than that without ABL control.
Wessel van der Deijl, Martin Obligado, Stéphane Barre, and Christophe Sicot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-116, https://doi.org/10.5194/wes-2024-116, 2024
Revised manuscript accepted for WES
Short summary
Short summary
We present a wind tunnel study on the effect of an adverse pressure gradient on wakes from porous disks and cylinders. We have quantified the spatial development of the turbulent wakes for Reynolds numbers up to 3.9 × 105 and at distances ranging from 1 to 12 diameters downstream, both with and without a pressure gradient. Consistently with previous studies, we find that the pressure gradient has an effect in all cases, resulting in larger velocity deficits and wider wakes.
YuanTso Li, Wei Yu, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-124, https://doi.org/10.5194/wes-2024-124, 2024
Revised manuscript accepted for WES
Short summary
Short summary
A novel wind farm concept, called a regenerative wind farm, is investigated numerically. This concept addresses the significant wake interaction losses among the traditional wind farms. Our results show that regenerative wind farms can greatly reduce these losses, boosting power output per unit land. Unlike traditional farms with 3-bladed wind turbines, regenerative farms use Multi-Rotor Systems with Lifting devices (MRSL), and it is this unconventional design effectively reduces wake losses.
Karim Ali, Pablo Ouro, and Tim Stallard
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-107, https://doi.org/10.5194/wes-2024-107, 2024
Revised manuscript accepted for WES
Short summary
Short summary
We introduce an innovative analytical method to better understand and optimize wind farm performance by accurately calculating how turbine wakes affect each other. Unlike traditional numerical approaches, our method provides a precise way to measure the impact of upstream wakes on downstream turbines. This new approach, validated through numerical comparisons, enhances optimisation strategies, potentially leading to more efficient wind farm operations and increased power generation.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-81, https://doi.org/10.5194/wes-2024-81, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The use of a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error of 100 modes in the proper orthogonal decomposition, and the insensitivity to which datasets are included for generating it.
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024, https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary
Short summary
Wind farm yield assessment often relies on analytical wake models. Calibrating these models can be challenging due to the stochastic nature of wind. We developed a calibration framework that performs a multi-phase optimization on the tuning parameters using time series SCADA data. This yields a parameter distribution that more accurately reflects reality than a single value. Results revealed notable variation in resultant parameter values, influenced by nearby wind farms and coastal effects.
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024, https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024, https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Short summary
This paper presents a three-way verification and validation between an engineering-fidelity model, a high-fidelity model, and measured data for the wind farm structural response and wake dynamics during an evolving stable boundary layer of a small wind farm, generally with good agreement.
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024, https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary
Short summary
The dynamic wake meandering model (DWMM) assumes that wind turbine wakes are transported like a passive tracer by the large-scale turbulence of the atmospheric boundary layer. We show that both the downstream transport and the lateral transport of the wake have differences from the passive tracer assumption. We then propose to include the turbulent Schmidt number into the DWMM to account for the less efficient transport of momentum and show that it improves the quality of the model predictions.
Mohammad Mehdi Mohammadi, Hugo Olivares-Espinosa, Gonzalo Pablo Navarro Diaz, and Stefan Ivanell
Wind Energ. Sci., 9, 1305–1321, https://doi.org/10.5194/wes-9-1305-2024, https://doi.org/10.5194/wes-9-1305-2024, 2024
Short summary
Short summary
This paper has put forward a set of recommendations regarding the actuator sector model implementation details to improve the capability of the model to reproduce similar results compared to those obtained by an actuator line model, which is one of the most common ways used for numerical simulations of wind farms, while providing significant computational savings. This includes among others the velocity sampling method and a correction of the sampled velocities to calculate the blade forces.
Franz V. Mühle, Florian M. Heckmeier, Filippo Campagnolo, and Christian Breitsamter
Wind Energ. Sci., 9, 1251–1271, https://doi.org/10.5194/wes-9-1251-2024, https://doi.org/10.5194/wes-9-1251-2024, 2024
Short summary
Short summary
Wind turbines influence each other, and these wake effects limit the power production of downstream turbines. Controlling turbines collectively and not individually can limit such effects. We experimentally investigate a control strategy increasing mixing in the wake. We want to see the potential of this so-called Helix control for power optimization and understand the flow physics. Our study shows that the control technique leads to clearly faster wake recovery and thus higher power production.
Pascal Weihing, Marion Cormier, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 9, 933–962, https://doi.org/10.5194/wes-9-933-2024, https://doi.org/10.5194/wes-9-933-2024, 2024
Short summary
Short summary
This study evaluates different approaches to simulate the near-wake flow of a wind turbine. The test case is in off-design conditions of the wind turbine, where the flow is separated from the blades and therefore very difficult to predict. The evaluation of simulation techniques is key to understand their limitations and to deepen the understanding of the near-wake physics. This knowledge can help to derive new wind farm design methods for yield-optimized farm layouts.
Nikolaos Bempedelis, Filippo Gori, Andrew Wynn, Sylvain Laizet, and Luca Magri
Wind Energ. Sci., 9, 869–882, https://doi.org/10.5194/wes-9-869-2024, https://doi.org/10.5194/wes-9-869-2024, 2024
Short summary
Short summary
This paper proposes a computational method to maximise the power production of wind farms through two strategies: layout optimisation and yaw angle optimisation. The proposed method relies on high-fidelity computational modelling of wind farm flows and is shown to be able to effectively maximise wind farm power production. Performance improvements relative to conventional optimisation strategies based on low-fidelity models can be attained, particularly in scenarios of increased flow complexity.
Benyamin Schliffke, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 9, 519–532, https://doi.org/10.5194/wes-9-519-2024, https://doi.org/10.5194/wes-9-519-2024, 2024
Short summary
Short summary
This paper studies the consequences of floater motions for the wake properties of a floating wind turbine. Since wake interactions are responsible for power production loss in wind farms, it is important that we know whether the tools that are used to predict this production loss need to be upgraded to take into account these aspects. Our wind tunnel study shows that the signature of harmonic floating motions can be observed in the far wake of a wind turbine, when motions have strong amplitudes.
Erwan Jézéquel, Frédéric Blondel, and Valéry Masson
Wind Energ. Sci., 9, 97–117, https://doi.org/10.5194/wes-9-97-2024, https://doi.org/10.5194/wes-9-97-2024, 2024
Short summary
Short summary
Wind turbine wakes affect the production and lifecycle of downstream turbines. They can be predicted with the dynamic wake meandering (DWM) method. In this paper, the authors break down the velocity and turbulence in the wake of a wind turbine into several terms. They show that it is implicitly assumed in the DWM that some of these terms are neglected. With high-fidelity simulations, it is shown that this can lead to some errors, in particular for the maximum turbulence added by the wake.
Erwan Jézéquel, Frédéric Blondel, and Valéry Masson
Wind Energ. Sci., 9, 119–139, https://doi.org/10.5194/wes-9-119-2024, https://doi.org/10.5194/wes-9-119-2024, 2024
Short summary
Short summary
Analytical models allow us to quickly compute the decreased power output and lifetime induced by wakes in a wind farm. This is achieved by evaluating the modified velocity and turbulence in the wake. In this work, we present a new model based on the velocity and turbulence breakdowns presented in Part 1. This new model is physically based, allows us to compute the whole turbulence profile (rather than the maximum value) and is built to take atmospheric stability into account.
Maarten J. van den Broek, Delphine De Tavernier, Paul Hulsman, Daan van der Hoek, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1909–1925, https://doi.org/10.5194/wes-8-1909-2023, https://doi.org/10.5194/wes-8-1909-2023, 2023
Short summary
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
Alessandro Sebastiani, James Bleeg, and Alfredo Peña
Wind Energ. Sci., 8, 1795–1808, https://doi.org/10.5194/wes-8-1795-2023, https://doi.org/10.5194/wes-8-1795-2023, 2023
Short summary
Short summary
The power curve of a wind turbine indicates the turbine power output in relation to the wind speed. Therefore, power curves are critically important to estimate the production of future wind farms as well as to assess whether operating wind farms are functioning correctly. Since power curves are often measured in wind farms, they might be affected by the interactions between the turbines. We show that these effects are not negligible and present a method to correct for them.
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 999–1016, https://doi.org/10.5194/wes-8-999-2023, https://doi.org/10.5194/wes-8-999-2023, 2023
Short summary
Short summary
Modeling the aerodynamic wake of airborne wind energy systems (AWESs) is crucial to properly estimating power production and to designing such systems. The velocities induced at the AWES from its own wake are studied with a model for the near wake and one for the far wake, using vortex methods. The model is validated with the lifting-line free-vortex wake method implemented in QBlade.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Peter Baas, Remco Verzijlbergh, Pim van Dorp, and Harm Jonker
Wind Energ. Sci., 8, 787–805, https://doi.org/10.5194/wes-8-787-2023, https://doi.org/10.5194/wes-8-787-2023, 2023
Short summary
Short summary
This work studies the energy production and wake losses of large offshore wind farms with a large-eddy simulation model. Therefore, 1 year of actual weather has been simulated for a suite of hypothetical 4 GW wind farm scenarios. The results suggest that production numbers increase significantly when the rated power of the individual turbines is larger while keeping the total installed capacity the same. Also, a clear impact of atmospheric stability on the energy production is found.
Robert Braunbehrens, Andreas Vad, and Carlo L. Bottasso
Wind Energ. Sci., 8, 691–723, https://doi.org/10.5194/wes-8-691-2023, https://doi.org/10.5194/wes-8-691-2023, 2023
Short summary
Short summary
The paper presents a new method in which wind turbines in a wind farm act as local sensors, in this way detecting the flow that develops within the power plant. Through this technique, we are able to identify effects on the flow generated by the plant itself and by the orography of the terrain. The new method not only delivers a flow model of much improved quality but can also help in understanding phenomena that drive the farm performance.
Tamino Wetz and Norman Wildmann
Wind Energ. Sci., 8, 515–534, https://doi.org/10.5194/wes-8-515-2023, https://doi.org/10.5194/wes-8-515-2023, 2023
Short summary
Short summary
In the present study, for the first time, the SWUF-3D fleet of multirotors is deployed for field measurements on an operating 2 MW wind turbine (WT) in complex terrain. The fleet of multirotors has the potential to fill the meteorological gap of observations in the near wake of WTs with high-temporal and high-spatial-resolution wind vector measurements plus temperature, humidity and pressure. The flow up- and downstream of the WT is measured simultaneously at multiple spatial positions.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Gonzalo Pablo Navarro Diaz, Alejandro Daniel Otero, Henrik Asmuth, Jens Nørkær Sørensen, and Stefan Ivanell
Wind Energ. Sci., 8, 363–382, https://doi.org/10.5194/wes-8-363-2023, https://doi.org/10.5194/wes-8-363-2023, 2023
Short summary
Short summary
In this paper, the capacity to simulate transient wind turbine wake interaction problems using limited wind turbine data has been extended. The key novelty is the creation of two new variants of the actuator line technique in which the rotor blade forces are computed locally using generic load data. The analysis covers a partial wake interaction case between two wind turbines for a uniform laminar inflow and for a turbulent neutral atmospheric boundary layer inflow.
Maarten Paul van der Laan, Mads Baungaard, and Mark Kelly
Wind Energ. Sci., 8, 247–254, https://doi.org/10.5194/wes-8-247-2023, https://doi.org/10.5194/wes-8-247-2023, 2023
Short summary
Short summary
Understanding wind turbine wake recovery is important to mitigate energy losses in wind farms. Wake recovery is often assumed or explained to be dependent on the first-order derivative of velocity. In this work we show that wind turbine wakes recover mainly due to the second-order derivative of the velocity, which transport momentum from the freestream towards the wake center. The wake recovery mechanisms and results of a high-fidelity numerical simulation are illustrated using a simple model.
Søren Juhl Andersen and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 2117–2133, https://doi.org/10.5194/wes-7-2117-2022, https://doi.org/10.5194/wes-7-2117-2022, 2022
Short summary
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Mads Baungaard, Stefan Wallin, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 1975–2002, https://doi.org/10.5194/wes-7-1975-2022, https://doi.org/10.5194/wes-7-1975-2022, 2022
Short summary
Short summary
Wind turbine wakes in the neutral atmospheric surface layer are simulated with Reynolds-averaged Navier–Stokes (RANS) using an explicit algebraic Reynolds stress model. Contrary to standard two-equation turbulence models, it can predict turbulence anisotropy and complex physical phenomena like secondary motions. For the cases considered, it improves Reynolds stress, turbulence intensity, and velocity deficit predictions, although a more top-hat-shaped profile is observed for the latter.
Koen Devesse, Luca Lanzilao, Sebastiaan Jamaer, Nicole van Lipzig, and Johan Meyers
Wind Energ. Sci., 7, 1367–1382, https://doi.org/10.5194/wes-7-1367-2022, https://doi.org/10.5194/wes-7-1367-2022, 2022
Short summary
Short summary
Recent research suggests that offshore wind farms might form such a large obstacle to the wind that it already decelerates before reaching the first turbines. Part of this phenomenon could be explained by gravity waves. Research on these gravity waves triggered by mountains and hills has found that variations in the atmospheric state with altitude can have a large effect on how they behave. This paper is the first to take the impact of those vertical variations into account for wind farms.
Cited articles
Abkar, M. and Porté-Agel, F.: The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms, Energies, 6, 2338–2361, https://doi.org/10.3390/en6052338, 2013. a
Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, https://doi.org/10.1017/jfm.2017.11, 2017. a, b, c
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018. a
Baas, P., Verzijlbergh, R., van Dorp, P., and Jonker, H.: Investigating energy production and wake losses of multi-gigawatt offshore wind farms with atmospheric large-eddy simulation, Wind Energ. Sci., 8, 787–805, https://doi.org/10.5194/wes-8-787-2023, 2023. a
Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G., Rados, K., Schlez, W., Neubert, A., Jensen, L. E., and Neckelmann, S.: Quantifying the impact of wind turbine wakes on power output at offshore wind farms, J. Atmos. Ocean. Tech., 27, 1302–1317, https://doi.org/10.1175/2010JTECHA1398.1, 2010. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Bastankhah, M. and Porté-Agel, F.: A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics, Energies, 10, 923, https://doi.org/10.3390/en10070923, 2017. a
Bleeg, J., Purcell, M., Ruisi, R., and Traiger, E.: Wind farm blockage and the consequences of neglecting its impact on energy production, Energies, 11, 1609, https://doi.org/10.3390/en11061609, 2018. a
Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers, Phys. Fluids, 22, 1–16, https://doi.org/10.1063/1.862466, 2010. a, b
Goit, J. and Meyers, J.: Optimal control of energy extraction in wind-farm boundary layers, J. Fluid Mech., 768, 5–50, https://doi.org/10.1017/jfm.2015.70, 2015. a
Hirth, B. D. and Schroeder, J. L.: Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine, J. Appl. Meteorol. Clim., 52, 39–46, 2013. a
Hyvärinen, A., Lacagnina, G., and Segalini, A.: A wind-tunnel study of the wake development behind wind turbines over sinusoidal hills, Wind Energy, 21, 605–617, https://doi.org/10.1002/we.2181, 2018. a
Kirby, A.: LES_CNBL_analysis, Zenodo [code], https://doi.org/10.5281/zenodo.14865964, 2025. a
Kirby, A., Briol, F.-X., Dunstan, T. D., and Nishino, T.: Data-driven modelling of turbine wake interactions and flow resistance in large wind farms, Wind Energy, 26, 968–984, https://doi.org/10.1002/we.2851, 2023a. a
Lanzilao, L. and Meyers, J.: Effects of self-induced gravity waves on finite wind-farm operations using a large-eddy simulation framework, J. Phys. Conf. Ser., 2265, 22043, https://doi.org/10.1088/1742-6596/2265/2/022043, 2022. a, b
Lanzilao, L. and Meyers, J.: An Improved Fringe-Region Technique for the Representation of Gravity Waves in Large Eddy Simulation with Application to Wind Farms, Bound.-Lay. Meteorol., 186, 567–593, https://doi.org/10.1007/s10546-022-00772-z, 2023a. a, b, c
Lanzilao, L. and Meyers, J.: A reference database of wind-farm large-eddy simulations for parametrizing effects of blockage and gravity waves, KU Leuven Research Data Repository [data set], https://doi.org/10.48804/L45LTT, 2023b. a, b
Mason, P. J. and Thomson, D. J.: Stochastic backscatter in large-eddy simulations of boundary layers, J. Fluid Mech., 242, 51–78, https://doi.org/10.1017/S0022112092002271, 1992. a
Meyers, J. and Meneveau, C.: Large Eddy Simulations of large wind-turbine arrays in the atmospheric boundary layer, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7 January 2010, https://doi.org/10.2514/6.2010-827, 2010. a
Moeng, C.-H.: A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence, J. Atmos. Sci., 41, 2052–2062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2, 1984. a
Nishino, T.: Two-scale momentum theory for very large wind farms, J. Phys. Conf. Ser., 753, 032054, https://doi.org/10.1088/1742-6596/753/3/032054, 2016. a
Nishino, T. and Draper, S.: Local blockage effect for wind turbines, J. Phys. Conf. Ser., 625, 012010, https://doi.org/10.1088/1742-6596/625/1/012010, 2015. a, b
Nygaard, N. G.: Wakes in very large wind farms and the effect of neighbouring wind farms, J. Phys. Conf. Ser., 524, 12162, https://doi.org/10.1088/1742-6596/524/1/012162, 2014. a
Ouro, P. and Nishino, T.: Performance and wake characteristics of tidal turbines in an infinitely large array, J. Fluid Mech., 925, A30, https://doi.org/10.1017/jfm.2021.692, 2021. a, b
Patel, K., Dunstan, T. D., and Nishino, T.: Time-dependent upper limits to the performance of large wind farms due to mesoscale atmospheric response, Energies, 14, 6437, https://doi.org/10.3390/en14196437, 2021. a
Porté-Agel, F., Wu, Y. T., and Chen, C. H.: A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm, Energies, 6, 5297–5313, https://doi.org/10.3390/en6105297, 2013. a, b, c
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59, https://doi.org/10.1007/s10546-019-00473-0, 2020. a, b
Shapiro, C. R., Gayme, D. F., and Meneveau, C.: Filtered actuator disks: Theory and application to wind turbine models in large eddy simulation, Wind Energy, 22, 1414–1420, https://doi.org/10.1002/we.2376, 2019. a, b, c, d
Smith, R. B.: The wind farm pressure field, Wind Energ. Sci., 9, 253–261, https://doi.org/10.5194/wes-9-253-2024, 2024. a
Stevens, B., Moeng, C.-H., and Sullivan, P. P.: Entrainment and Subgrid Lengthscales in Large-Eddy Simulations of Atmospheric Boundary-Layer Flows, Springer Netherlands, Dordrecht, 253–269, ISBN 978-94-010-0928-7, https://doi.org/10.1007/978-94-010-0928-7_20, 2000. a
Stevens, R. J. A. M.: Understanding wind farm power densities, J. Fluid Mech., 958, F1, https://doi.org/10.1017/jfm.2023.113, 2023. a
Stevens, R. J. A. M. and Meneveau, C.: Flow Structure and Turbulence in Wind Farms, Annu. Rev. Fluid Mech., 49, 311–339, https://doi.org/10.1146/annurev-fluid-010816-060206, 2017. a
Stevens, R. J. A. M., Gayme, D. F., and Meneveau, C.: Effects of turbine spacing on the power output of extended wind-farms, Wind Energy, 19, 359–370, https://doi.org/10.1002/we.1835, 2016. a
Stipa, S., Ajay, A., Allaerts, D., and Brinkerhoff, J.: The multi-scale coupled model: a new framework capturing wind farm–atmosphere interaction and global blockage effects, Wind Energ. Sci., 9, 1123–1152, https://doi.org/10.5194/wes-9-1123-2024, 2024. a
Veers, P., Dykes, K., Basu, S., Bianchini, A., Clifton, A., Green, P., Holttinen, H., Kitzing, L., Kosovic, B., Lundquist, J. K., Meyers, J., O'Malley, M., Shaw, W. J., and Straw, B.: Grand Challenges: wind energy research needs for a global energy transition, Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, 2022. a
Vermeer, L. J., Sørensen, J. N., and Crespo, A.: Wind turbine wake aerodynamics, Prog. Aerosp. Sci., 39, 467–510, https://doi.org/10.1016/S0376-0421(03)00078-2, 2003. a
Verstappen, R. W. C. P. and Veldman, A. E. P.: Symmetry-preserving discretization of turbulent flow, J. Comput. Phys., 187, 343–368, https://doi.org/10.1016/S0021-9991(03)00126-8, 2003. a
Wu, K. L. and Porté-Agel, F.: Flow adjustment inside and around large finite-size wind farms, Energies, 10, 2164, https://doi.org/10.3390/en10122164, 2017. a, b
Wu, Y. T. and Porté-Agel, F.: Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm, Renew. Energ., 75, 945–955, https://doi.org/10.1016/j.renene.2014.06.019, 2015. a
Zhan, L., Letizia, S., and Iungo, G. V.: LiDAR measurements for an onshore wind farm: Wake variability for different incoming wind speeds and atmospheric stability regimes, Wind Energy, 23, 501–527, 2020. a
Short summary
Traditionally, the aerodynamic loss of wind farm efficiency is classified into wake loss and farm blockage loss. This study, using high-fidelity simulations, shows that neither of these two losses is well correlated with the overall farm efficiency. We propose new measures called turbine-scale efficiency and farm-scale efficiency to better describe turbine–wake effects and farm–atmosphere interactions. This study suggests the importance of better modelling farm-scale loss in future studies.
Traditionally, the aerodynamic loss of wind farm efficiency is classified into wake loss and...
Altmetrics
Final-revised paper
Preprint