Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1455-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1455-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A physically interpretable data-driven surrogate model for wake steering
Balthazar Arnoldus Maria Sengers
CORRESPONDING AUTHOR
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Matthias Zech
German Aerospace Center (DLR), Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
Pim Jacobs
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Gerald Steinfeld
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Martin Kühn
ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Related authors
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn
Wind Energ. Sci., 8, 747–770, https://doi.org/10.5194/wes-8-747-2023, https://doi.org/10.5194/wes-8-747-2023, 2023
Short summary
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024, https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024, https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary
Short summary
This paper provides an innovative blade design methodology for offshore wind turbines with very large rotors compared to their rated power, which are tailored for an increased power feed-in at low wind speeds. Rather than designing the blade for a single optimized operational point, we include the application of peak shaving in the design process and introduce a design for two tip speed ratios. We describe how enlargement of the rotor diameter can be realized to improve the value of wind power.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023, https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Short summary
This study examines wind vane measurements of commercial wind turbines and their impact on yaw control. The authors discovered that rotor interference can cause an overestimation of wind vane measurements, leading to overcorrection of the yaw controller. A correction function that improves the yaw behaviour is presented and validated in free-field experiments on a commercial wind turbine. This work provides new insights into wind direction measurements and suggests ways to optimize yaw control.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn
Wind Energ. Sci., 8, 747–770, https://doi.org/10.5194/wes-8-747-2023, https://doi.org/10.5194/wes-8-747-2023, 2023
Short summary
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Frauke Theuer, Andreas Rott, Jörge Schneemann, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 7, 2099–2116, https://doi.org/10.5194/wes-7-2099-2022, https://doi.org/10.5194/wes-7-2099-2022, 2022
Short summary
Short summary
Remote-sensing-based approaches have shown potential for minute-scale forecasting and need to be further developed towards an operational use. In this work we extend a lidar-based forecast to an observer-based probabilistic power forecast by combining it with a SCADA-based method. We further aggregate individual turbine power using a copula approach. We found that the observer-based forecast benefits from combining lidar and SCADA data and can outperform persistence for unstable stratification.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022, https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Short summary
We present three methods that can determine the alignment of a lidar placed on the transition piece of an offshore wind turbine based on measurements with the instrument: a practical implementation of hard targeting for north alignment, a method called sea surface levelling to determine the levelling of the system from water surface measurements, and a model that can determine the dynamic levelling based on the operating status of the wind turbine.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021, https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Short summary
Dynamic inflow denotes the unsteady aerodynamic response to fast changes in rotor loading and leads to load overshoots. We performed a pitch step experiment with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg. We measured axial and tangential inductions with a recent method with a 2D-LDA system and performed load and wake measurements. These radius-resolved measurements allow for new insights into the dynamic inflow phenomenon.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Anantha Padmanabhan Kidambi Sekar, Marijn Floris van Dooren, Andreas Rott, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-16, https://doi.org/10.5194/wes-2021-16, 2021
Preprint withdrawn
Short summary
Short summary
Turbine-mounted lidars performing inflow scans can be used to optimise wind turbine performance and extend their lifetime. This paper introduces a new method to extract wind inflow information from a turbine-mounted scanning SpinnerLidar based on Proper Orthogonal Decomposition. This method offers a balance between simple reconstruction methods and complicated physics-based solvers. The results show that the model can be used for lidar assisted control, loads validation and turbulence studies.
Frauke Theuer, Marijn Floris van Dooren, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 5, 1449–1468, https://doi.org/10.5194/wes-5-1449-2020, https://doi.org/10.5194/wes-5-1449-2020, 2020
Short summary
Short summary
Very short-term wind power forecasts are gaining increasing importance with the rising share of renewables in today's energy system. In this work, we developed a methodology to forecast wind power of offshore wind turbines on minute scales utilising long-range single-Doppler lidar measurements. The model was able to outperform persistence during unstable stratification in terms of deterministic and probabilistic scores, while it showed large shortcomings for stable atmospheric conditions.
Jörge Schneemann, Andreas Rott, Martin Dörenkämper, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 5, 29–49, https://doi.org/10.5194/wes-5-29-2020, https://doi.org/10.5194/wes-5-29-2020, 2020
Short summary
Short summary
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend over more than 50 km.
We analysed the impact of these so-called cluster wakes on a distant wind farm using remote-sensing wind measurements and power production data.
Cluster wakes caused power losses up to 55 km downstream in certain atmospheric states.
A better understanding of cluster wake effects reduces uncertainties in offshore wind resource assessment and improves offshore areal planning.
Róbert Ungurán, Vlaho Petrović, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 677–692, https://doi.org/10.5194/wes-4-677-2019, https://doi.org/10.5194/wes-4-677-2019, 2019
Short summary
Short summary
A novel lidar-based sensory system for wind turbine control is proposed. The main contributions are the parametrization method of the novel measurement system, the identification of possible sources of measurement uncertainty, and their modelling. Although not the focus of the submitted paper, the mentioned contributions represent essential building blocks for robust feedback–feedforward wind turbine control development which could be used to improve wind turbine control strategies.
Siamak Akbarzadeh, Hassan Kassem, Renko Buhr, Gerald Steinfeld, and Bernhard Stoevesandt
Wind Energ. Sci., 4, 619–632, https://doi.org/10.5194/wes-4-619-2019, https://doi.org/10.5194/wes-4-619-2019, 2019
Short summary
Short summary
The numerical flow simulation solvers are extensively used for site assessment in the wind energy industry. However, due to the complexity of flow regimes, it is essential to calibrate the important parameters of such algorithms with measurement data. In this paper, we present a computationally cheap (adjoint) solver that can be coupled with any standard gradient-based optimizer to calibrate the inflow boundary of a CFD solver using the wind speed measurements from the interior of a domain.
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580, https://doi.org/10.5194/wes-4-563-2019, https://doi.org/10.5194/wes-4-563-2019, 2019
Short summary
Short summary
Airborne wind energy systems aim to operate at altitudes above conventional wind turbines where reliable high-resolution wind data are scarce. Wind measurements and computational simulations both have advantages and disadvantages when assessing the wind resource at such heights. This article investigates whether assimilating measurements into the model generates a more accurate wind data set up to 1100 m. These wind data sets are used to estimate optimal AWES operating altitudes and power.
Mehdi Vali, Vlaho Petrović, Gerald Steinfeld, Lucy Y. Pao, and Martin Kühn
Wind Energ. Sci., 4, 139–161, https://doi.org/10.5194/wes-4-139-2019, https://doi.org/10.5194/wes-4-139-2019, 2019
Short summary
Short summary
A new active power control (APC) approach is investigated to simultaneously reduce the wake-induced power tracking errors and structural fatigue loads of individual turbines within a wind farm. The non-unique solution of the APC problem with respect to the distribution of the individual powers is exploited. The simple control architecture and practical measurement system make the proposed approach prominent for real-time control of large wind farms with turbulent flows and wakes.
Andreas Rott, Bart Doekemeijer, Janna Kristina Seifert, Jan-Willem van Wingerden, and Martin Kühn
Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, https://doi.org/10.5194/wes-3-869-2018, 2018
Short summary
Short summary
Active wake deflection (AWD) aims to increase the power output of a wind farm by misaligning the yaw of upstream turbines. We analysed the effect of dynamic wind direction changes on AWD. The results show that AWD is very sensitive towards these dynamics. Therefore, we present a robust active wake control, which considers uncertainties and wind direction changes, increasing the overall power output of a wind farm. A side effect is a significant reduction of the yaw actuation of the turbines.
Niko Mittelmeier and Martin Kühn
Wind Energ. Sci., 3, 395–408, https://doi.org/10.5194/wes-3-395-2018, https://doi.org/10.5194/wes-3-395-2018, 2018
Short summary
Short summary
Upwind horizontal axis wind turbines need to be aligned with the main wind direction to maximize energy yield. This paper presents new methods to improve turbine alignment and detect changes during operational lifetime with standard nacelle met mast instruments. The flow distortion behind the rotor is corrected with a multilinear regression model and two alignment changes are detected with an accuracy of ±1.4° within 3 days of operation after the change is introduced.
Laura Valldecabres, Alfredo Peña, Michael Courtney, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 3, 313–327, https://doi.org/10.5194/wes-3-313-2018, https://doi.org/10.5194/wes-3-313-2018, 2018
Short summary
Short summary
This paper focuses on the use of scanning lidars for very short-term forecasting of wind speeds in a near-coastal area. An extensive data set of offshore lidar measurements up to 6 km has been used for this purpose. Using dual-doppler measurements, the topographic characteristics of the area have been modelled. Assuming Taylor's frozen turbulence and applying the topographic corrections, we demonstrate that we can forecast wind speeds with more accuracy than the benchmarks persistence or ARIMA.
Lukas Vollmer, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 2, 603–614, https://doi.org/10.5194/wes-2-603-2017, https://doi.org/10.5194/wes-2-603-2017, 2017
Short summary
Short summary
A model chain to simulate changing atmospheric conditions at the location of an offshore wind farm is introduced and validated. The methodology is used to simulate the wind flow upstream and downstream of an offshore wind turbine of the German wind farm Alpha ventus. The model results show a good agreement with wind measurements from the met mast that is located at the wind farm and with remote sensing measurements of the horizontal wind field.
Davide Trabucchi, Lukas Vollmer, and Martin Kühn
Wind Energ. Sci., 2, 569–586, https://doi.org/10.5194/wes-2-569-2017, https://doi.org/10.5194/wes-2-569-2017, 2017
Short summary
Short summary
The wakes of wind turbines cause losses in the energy production of a wind farm. The accuracy of models applied to predict wake losses is a key factor for new wind projects. This paper presents an engineering wake model that can simulate merging wakes on the basis of physical principles. We used high-fidelity simulations of merging wakes to assess this model and found a better agreement with the reference than commonly used models implementing the superposition of individual wakes.
Niko Mittelmeier, Julian Allin, Tomas Blodau, Davide Trabucchi, Gerald Steinfeld, Andreas Rott, and Martin Kühn
Wind Energ. Sci., 2, 477–490, https://doi.org/10.5194/wes-2-477-2017, https://doi.org/10.5194/wes-2-477-2017, 2017
Short summary
Short summary
Stability classification is usually based on measurements from met masts, buoys or lidars. The objective of this paper is to find a classification for stability based on wind turbine supervisory control and data acquisition measurements in order to fit engineering wake models better to the current ambient conditions. The proposed signal is very sensitive to increased turbulence. It allows us to distinguish between conditions with different magnitudes of wake effects.
Marijn Floris van Dooren, Filippo Campagnolo, Mikael Sjöholm, Nikolas Angelou, Torben Mikkelsen, and Martin Kühn
Wind Energ. Sci., 2, 329–341, https://doi.org/10.5194/wes-2-329-2017, https://doi.org/10.5194/wes-2-329-2017, 2017
Short summary
Short summary
We conducted measurements in a wind tunnel with the remote sensing technique lidar to map the flow around a row of three model wind turbines. Two lidars were positioned near the wind tunnel walls to measure the two-dimensional wind vector over a defined scanning line or area without influencing the flow itself. A comparison of the lidar measurements with a hot-wire probe and a thorough uncertainty analysis confirmed the usefulness of lidar technology for such flow measurements in a wind tunnel.
Niko Mittelmeier, Tomas Blodau, and Martin Kühn
Wind Energ. Sci., 2, 175–187, https://doi.org/10.5194/wes-2-175-2017, https://doi.org/10.5194/wes-2-175-2017, 2017
Short summary
Short summary
Efficient detection of wind turbines operating below their expected power output and immediate corrections help maximize asset value. The method presented estimates the environmental conditions from turbine states and uses pre-calculated power lookup tables from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output are an indication of underperformance. A demonstration of the method's ability to detect underperformance is given.
Lukas Vollmer, Gerald Steinfeld, Detlev Heinemann, and Martin Kühn
Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, https://doi.org/10.5194/wes-1-129-2016, 2016
Short summary
Short summary
The wake flow downstream of yaw misaligned wind turbines is studied in numeric simulations of different atmospheric turbulence and shear conditions. We find that the average trajectory of the wake as well as the variation about this average is influenced by the thermal stability of the atmosphere. The results suggest that an intentional intervention in the yaw control of individual turbines to increase overall wind farm performance might be not successful during unstable thermal conditions.
Juan José Trujillo, Janna Kristina Seifert, Ines Würth, David Schlipf, and Martin Kühn
Wind Energ. Sci., 1, 41–53, https://doi.org/10.5194/wes-1-41-2016, https://doi.org/10.5194/wes-1-41-2016, 2016
Short summary
Short summary
We present the analysis of the trajectories followed by the wind, in the immediate vicinity, behind an offshore wind turbine and their dependence on its yaw misalignment. We apply wake tracking on wind fields measured with a lidar (light detection and ranging) system located at the nacelle of the wind turbine and pointing downstream. The analysis reveals discrepancies of the estimated mean wake paths against theoretical and wind tunnel experiments using different wake-tracking techniques.
Related subject area
Thematic area: Dynamics and control | Topic: Wind farm control
On the importance of wind predictions in wake steering optimization
On the power and control of a misaligned rotor – beyond the cosine law
Evaluating the potential of wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Dynamic wind farm flow control using free-vortex wake models
The value of wake steering wind farm flow control in US energy markets
Load assessment of a wind farm considering negative and positive yaw misalignment for wake steering
Towards real-time optimal control of wind farms using large-eddy simulations
Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant
Sensitivity analysis of wake steering optimisation for wind farm power maximisation
The dynamic coupling between the pulse wake mixing strategy and floating wind turbines
Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment
Wind farm flow control: prospects and challenges
Large-eddy simulation of a wind-turbine array subjected to active yaw control
FarmConners market showcase results: wind farm flow control considering electricity prices
The revised FLORIDyn model: implementation of heterogeneous flow and the Gaussian wake
Multifidelity multiobjective optimization for wake-steering strategies
Evaluation of different power tracking operating strategies considering turbine loading and power dynamics
Experimental analysis of the effect of dynamic induction control on a wind turbine wake
Elie Kadoche, Pascal Bianchi, Florence Carton, Philippe Ciblat, and Damien Ernst
Wind Energ. Sci., 9, 1577–1594, https://doi.org/10.5194/wes-9-1577-2024, https://doi.org/10.5194/wes-9-1577-2024, 2024
Short summary
Short summary
This work proposes a new wind farm controller based on wind predictions and conducts a synthetic sensitivity analysis of wake steering and the variations of the wind direction. For wind turbines that can rotate from −15 to 15° every 10 min, if the wind direction changes by more than 7.34° every 10 min, it is important to consider future wind data in a steady-state yaw control optimization.
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1547–1575, https://doi.org/10.5194/wes-9-1547-2024, https://doi.org/10.5194/wes-9-1547-2024, 2024
Short summary
Short summary
We develop a new simple model to predict power losses incurred by a wind turbine when it yaws out of the wind. The model reveals the effects of a number of rotor design parameters and how the turbine is governed when it yaws. The model exhibits an excellent agreement with large eddy simulations and wind tunnel measurements. We showcase the capabilities of the model by deriving the power-optimal yaw strategy for a single turbine and for a cluster of wake-interacting turbines.
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-50, https://doi.org/10.5194/wes-2024-50, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Wake steering can be integrated within the wind farm layout optimization through a co-design approach. This study estimates the potential of this method for a wide range of realistic conditions, adopting a tailored genetic algorithm and novel geometric yaw relations. A gain in the annual energy yield between 0.3 % and 0.4 % is obtained for a 16-tubrines farm and a multi-objective implementation is used to limit the loss in case wake steering is not used during the farm operation.
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024, https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Short summary
Wind turbine wakes negatively affect wind farm performance as they impinge on downstream rotors. Wake steering reduces these losses by redirecting wakes using yaw misalignment of the upstream rotor. We develop a novel control strategy based on model predictions to implement wake steering under time-varying conditions. The controller is tested in a high-fidelity simulation environment and improves wind farm power output compared to a state-of-the-art reference controller.
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024, https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Short summary
Wake steering is a wind farm control technology in which turbines are misaligned with the wind to deflect their wakes away from downstream turbines, increasing total power production. In this paper, we use a wind farm control model and historical electricity prices to assess the potential increase in market value from wake steering for 15 US wind plants. For most plants, we find that the relative increase in revenue from wake steering exceeds the relative increase in energy production.
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-6, https://doi.org/10.5194/wes-2024-6, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This work investigates asymmetries in terms of power performance and fatigue loading on a 5-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintenance good power gains and show that partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Nick Janssens and Johan Meyers
Wind Energ. Sci., 9, 65–95, https://doi.org/10.5194/wes-9-65-2024, https://doi.org/10.5194/wes-9-65-2024, 2024
Short summary
Short summary
Proper wind farm control may vastly contribute to Europe's plan to go carbon neutral. However, current strategies don't account for turbine–wake interactions affecting power extraction. High-fidelity models (e.g., LES) are needed to accurately model this but are considered too slow in practice. By coarsening the resolution, we were able to design an efficient LES-based controller with real-time potential. This may allow us to bridge the gap towards practical wind farm control in the near future.
Peter Bachant, Peter Ireland, Brian Burrows, Chi Qiao, James Duncan, Danian Zheng, and Mohit Dua
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-175, https://doi.org/10.5194/wes-2023-175, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Intentional misalignment of upstream turbines in wind plants in order to steer wakes away from downstream turbines has been a topic of research interest for years, but has not yet achieved widespread commercial adoption. We deploy one such wake steering system to a utility-scale wind plant, then create a model to predict plant behavior and enable successful control. We apply calibrations to a physics-based model and use machine learning to correct its outputs to improve predictive capability.
Filippo Gori, Sylvain Laizet, and Andrew Wynn
Wind Energ. Sci., 8, 1425–1451, https://doi.org/10.5194/wes-8-1425-2023, https://doi.org/10.5194/wes-8-1425-2023, 2023
Short summary
Short summary
Wake steering is a promising strategy to increase the power output of modern wind farms by mitigating the negative effects of aerodynamic interaction among turbines. As farm layouts grow in size to meet renewable targets, the complexity of wake steering optimisation increases too. With the objective of enabling robust and predictable wake steering solutions, this study investigates the sensitivity of wake steering optimisation for three different farm layouts with increasing complexity levels.
Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 849–864, https://doi.org/10.5194/wes-8-849-2023, https://doi.org/10.5194/wes-8-849-2023, 2023
Short summary
Short summary
Wind turbines placed in farms interact with their wake, lowering the power production of the wind farm. This can be mitigated using so-called wake mixing techniques. This work investigates the coupling between the pulse wake mixing technique and the motion of floating wind turbines using the pulse. Frequency response experiments and time domain simulations show that extra movement is undesired and that the
optimalexcitation frequency is heavily platform dependent.
Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn
Wind Energ. Sci., 8, 747–770, https://doi.org/10.5194/wes-8-747-2023, https://doi.org/10.5194/wes-8-747-2023, 2023
Short summary
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Mou Lin and Fernando Porté-Agel
Wind Energ. Sci., 7, 2215–2230, https://doi.org/10.5194/wes-7-2215-2022, https://doi.org/10.5194/wes-7-2215-2022, 2022
Short summary
Short summary
Large-eddy simulation (LES) is a widely used method to study wind turbine flow. To save computational resources, the turbine-inducing forces in LES are often modelled by parametrisations. We validate three widely used turbine parametrisations in LES in different yaw and offset configurations with wind tunnel measurements, and we find that, in comparison with other parametrisations, the blade element actuator disk model strikes a good balance of accuracy and computational cost.
Konstanze Kölle, Tuhfe Göçmen, Irene Eguinoa, Leonardo Andrés Alcayaga Román, Maria Aparicio-Sanchez, Ju Feng, Johan Meyers, Vasilis Pettas, and Ishaan Sood
Wind Energ. Sci., 7, 2181–2200, https://doi.org/10.5194/wes-7-2181-2022, https://doi.org/10.5194/wes-7-2181-2022, 2022
Short summary
Short summary
The paper studies wind farm flow control (WFFC) in simulations with variable electricity prices. The results indicate that considering the electricity price in the operational strategy can be beneficial with respect to the gained income compared to focusing on the power gain only. Moreover, revenue maximization by balancing power production and structural load reduction is demonstrated at the example of a single wind turbine.
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Julian Quick, Ryan N. King, Garrett Barter, and Peter E. Hamlington
Wind Energ. Sci., 7, 1941–1955, https://doi.org/10.5194/wes-7-1941-2022, https://doi.org/10.5194/wes-7-1941-2022, 2022
Short summary
Short summary
Wake steering is an emerging wind power plant control strategy where upstream turbines are intentionally yawed out of alignment with the incoming wind, thereby steering wakes away from downstream turbines. Trade-offs between the gains in power production and fatigue loads induced by this control strategy are the subject of continuing investigation. In this study, we present an optimization approach for efficiently exploring the trade-offs between power and loading during wake steering.
Florian Pöschke and Horst Schulte
Wind Energ. Sci., 7, 1593–1604, https://doi.org/10.5194/wes-7-1593-2022, https://doi.org/10.5194/wes-7-1593-2022, 2022
Short summary
Short summary
The paper compares two different strategies for wind turbine control when following a power command. A model-based control scheme for a 5 MW wind turbine is designed, and a comparison in terms of the mechanical loading and the attainable power dynamics is drawn based on simulation studies. Reduced-order models suitable for integration into an upper-level control design are discussed. The dependence of the turbine behavior on the chosen strategy is illustrated and analyzed.
Daan van der Hoek, Joeri Frederik, Ming Huang, Fulvio Scarano, Carlos Simao Ferreira, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 1305–1320, https://doi.org/10.5194/wes-7-1305-2022, https://doi.org/10.5194/wes-7-1305-2022, 2022
Short summary
Short summary
The paper presents a wind tunnel experiment where dynamic induction control was implemented on a small-scale turbine. By periodically changing the pitch angle of the blades, the low-velocity turbine wake is perturbed, and hence it recovers at a faster rate. Small particles were released in the flow and subsequently recorded with a set of high-speed cameras. This allowed us to reconstruct the flow behind the turbine and investigate the effect of dynamic induction control on the wake.
Cited articles
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on
wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27,
35104, https://doi.org/10.1063/1.4913695, 2015. a
Abkar, M., Sørensen, J. N., and Porté-Agel, F.: An analytical model
for the effect of vertical wind veer on wind turbine wakes, Energies, 11,
1838, https://doi.org/10.3390/en11071838, 2018. a
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for
wind-turbine wakes, Renew. Energ., 70, 116–123,
https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of
wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541,
https://doi.org/10.1017/jfm.2016.595, 2016. a, b
Bastankhah, M. and Porté-Agel, F.: Wind farm power optimization via yaw
angle control: A wind tunnel study, J. Renew. Sustain. Ener., 11, 023301,
https://doi.org/10.1063/1.5077038, 2019. a
Bastankhah, M., Shapiro, C., Shamsoddin, S., Gayme, D., and Meneveau, C.: A
vortex sheet based analytical model of the curled wake behind yawed wind
turbines, J. Fluid Mech., 933, A2, https://doi.org/10.1017/jfm.2021.1010, 2022. a
Basu, S., Holtslag, A. A. M., Van De Wiel, B. J. H., Moene, A. F., and
Steeneveld, G.-J.: An inconvenient ”truth” about using sensible heat flux as
a surface boundary condition in models under stably stratified regimes, Acta Geophys., 56, 88–99, https://doi.org/10.2478/s11600-007-0038-y, 2008. a, b
Beare, R. J. and Macvean, M. K.: Resolution sensitivity and scaling of
large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol.,
112, 257–281, https://doi.org/10.1023/B:BOUN.0000027910.57913.4d, 2004. a
Blondel, F. and Cathelain, M.: An alternative form of the super-Gaussian wind turbine wake model, Wind Energ. Sci., 5, 1225–1236, https://doi.org/10.5194/wes-5-1225-2020, 2020. a
Bottasso, C. L., Cacciola, S., and Schreiber, J.: Local wind speed estimation,
with application to wake impingement detection, Renew. Energ., 116,
155–168, https://doi.org/10.1016/j.renene.2017.09.044, 2018. a
Bromm, M., Rott, A., Beck, H., Vollmer, L., Steinfeld, G., and Kühn, M.:
Field investigation on the influence of yaw misalignment on the propagation
of wind turbine wakes, Wind Energy, 21, 1011–1028, https://doi.org/10.1002/we.2210,
2018. a
Brugger, P., Debnath, M., Scholbrock, A., Fleming, P., Moriarty, P., Simley, E., Jager, D., Roadman, J., Murphy, M., Zong, H., and Porté-Agel, F.: Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models, Wind Energ. Sci., 5, 1253–1272, https://doi.org/10.5194/wes-5-1253-2020, 2020. a
Brunton, S., Proctor, J., and Kutz, J.: Discovering governing equations from
data by sparse identification of nonlinear dynamical systems, P. Natl. Acad.
Sci. USA, 113, 3932–3937, https://doi.org/10.1073/pnas.1517384113, 2016. a
Campagnolo, F., Petrovic, V., Schreiber, J., Nanos, E., Croce, A., and Botasso,
C.: Wind tunnel testing of a closed-loop wake deflection controller for wind
farm power maximization Recent citations, J. Phys.-Conf. Ser., 753,
032006, https://doi.org/10.1088/1742-6596/753/3/032006, 2016. a
Corten, G. and Schaak, P.: Heat and Flux: Increase of Wind Farm Production by
Reduction of the Axial Induction, in: EWEC 2003, 16–19 June, Madrid, Spain, ECN-RX-03-061,
2003. a
Dahlberg, J. and Medici, D.: Potential improvement of wind turbine array
efficiency by active wake control (AWC), in: EWEC 2003, 16–19 June, Madrid,
Spain, 2003. a
Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., and
Kühn, M.: The impact of stable atmospheric boundary layers on
wind-turbine wakes within offshore wind farms, J. Wind Eng. Ind. Aerod.,
144, 146–153, https://doi.org/10.1016/j.jweia.2014.12.011, 2015. a
Fleming, P., Gebraad, P. M. O., Lee, S., van Wingerden, J., Johnson, K.,
Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Simulation
comparison of wake mitigation control strategies for a two-turbine case,
Wind Energy, 18, 2135–2143, https://doi.org/10.1002/we.1810, 2015. a
Fleming, P., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z., Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of wake steering at an offshore wind farm, Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017, 2017. a
Fleming, P., Annoni, J., Churchfield, M., Martinez-Tossas, L. A., Gruchalla, K., Lawson, M., and Moriarty, P.: A simulation study demonstrating the importance of large-scale trailing vortices in wake steering, Wind Energ. Sci., 3, 243–255, https://doi.org/10.5194/wes-3-243-2018, 2018. a, b
Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a, b
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020. a, b
Gebraad, P., Teeuwisse, F., Wingerden, J. v., Fleming, P., Ruben, S., Marden,
J., and Pao, L.: Wind plant power optimization through yaw controlusing a
parametric model for wake effects – a CFDsimulation study, Wind Energy, 19,
95–114, https://doi.org/10.1002/we.1822, 2016. a
Göçmen, T. and Giebel, G.: Data-driven Wake Modelling for Reduced
Uncertainties in short-term Possible Power Estimation, J. Phys.-Conf. Ser.,
1037, 072002, https://doi.org/10.1088/1742-6596/1037/7/072002, 2018. a
Hastie, T., Tibishirani, R., and Friedman, J.: The elements of statistical
learning: data mining, inference, and prediction, Springer Science &
Business Media, 2nd edn., ISBN 978-0-387-95284-0, 2009. a
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and
Meneveau, C.: Wake structure in actuator disk models of wind turbines in yaw
under uniform inflow conditions, J. Renew. Sustain. Ener., 8, 043301,
https://doi.org/10.1063/1.4955091, 2016. a
Hulsman, P., Andersen, S. J., and Göçmen, T.: Optimizing wind farm control through wake steering using surrogate models based on high-fidelity simulations, Wind Energ. Sci., 5, 309–329, https://doi.org/10.5194/wes-5-309-2020, 2020. a
Jimenez, A., Crespo, A., and Migoya, E.: Application of a LES technique to
characterize the wake deflection of a wind turbine in yaw, Wind Energy, 13,
559–572, https://doi.org/10.1002/we.380, 2010. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW
Reference Wind Turbine for Offshore System Development, Tech. Rep.
NREL/TP-500-38060, National Renewable Energy Laboratory, https://doi.org/10.2172/947422, 2009. a
King, J., Fleming, P., King, R., Martínez-Tossas, L. A., Bay, C. J., Mudafort, R., and Simley, E.: Control-oriented model for secondary effects of wake steering, Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021, 2021. a
Larsen, G. C., Madsen, H. A., Thomsen, K., and Larsen, T. J.: Wake meandering:
A pragmatic approach, Wind Energy, 11, 377–395, https://doi.org/10.1002/we.267, 2008. a
Marčiukaitis, M., Žutautaitė, I., Martišauskas, L.,
Jokšas, B., Gecevičius, G., and Sfetsos, A.: Non-linear
regression model for wind turbine power curve, Renew. Energ., 113, 732–741,
https://doi.org/10.1016/j.renene.2017.06.039, 2017. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a
Messner, J. W. and Pinson, P.: Online adaptive lasso estimation in vector
autoregressive models for high dimensional wind power forecasting, Int. J.
Forecasting, 35, 1485–1498, https://doi.org/10.1016/j.ijforecast.2018.02.001, 2019. a
Niayifar, A. and Porté-Agel, F.: Analytical modeling of wind farms: A
new approach for power prediction, Energies, 9, 741,
https://doi.org/10.3390/en9090741, 2016. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12,
2825–2830, 2011. a, b
Rott, A., Doekemeijer, B., Seifert, J. K., van Wingerden, J.-W., and Kühn, M.: Robust active wake control in consideration of wind direction variability and uncertainty, Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, 2018. a
Schottler, J., Hölling, A., Peinke, J., and Hölling, M.: Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw, Wind Energ. Sci., 2, 439–442, https://doi.org/10.5194/wes-2-439-2017, 2017. a
Schreiber, J., Bottasso, C. L., Salbert, B., and Campagnolo, F.: Improving wind farm flow models by learning from operational data, Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, 2020. a
Sengers, B. A. M.: A physically interpretable data-driven surrogate model for wake steering, Zenodo [data set], https://doi.org/10.5281/zenodo.6821164, 2022. a
Sengers, B. A. M. and Zech, M.:
Model code Data-driven wAke steeRing surrogaTe model (DART), Zenodo [code],
https://doi.org/10.5281/zenodo.6759129, 2022. a
Sengers, B. A. M., Steinfeld, G., Heinemann, D., and Kühn, M.: A new
method to characterize the curled wake shape under yaw misalignment, J.
Phys.-Conf. Ser., 1618, 062050, https://doi.org/10.1088/1742-6596/1618/6/062050,
2020. a, b
Shapiro, C. R., Starke, G., Meneveau, C., and Gayme, D.: A wake modeling
paradigm for wind farm design and control, Energies, 12, 2956,
https://doi.org/10.3390/en12152956, 2019. a
Simley, E., Fleming, P., and King, J.: Design and analysis of a wake steering controller with wind direction variability, Wind Energ. Sci., 5, 451–468, https://doi.org/10.5194/wes-5-451-2020, 2020. a
Stathopoulos, C., Kaperoni, A., Galanis, G., and Kallos, G.: Wind power
prediction based on numerical and statistical models, J. Wind Eng. Ind.
Aerod., 112, 25–38, https://doi.org/10.1016/j.jweia.2012.09.004, 2013. a
Ti, Z., Deng, X. W., and Yang, H.: Wake modeling of wind turbines using
machine learning, Appl. Energ., 257, 114025,
https://doi.org/10.1016/j.apenergy.2019.114025, 2020. a
Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso, J. Roy.
Stat. Soc. B. Met., 58, 267–288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x,
1996. a, b
van der Hoek, D., Kanev, S., Allin, J., Bieniek, D., and Mittelmeier, N.:
Effects of axial induction control on wind farm energy production – A field
test, Renew. Energ., 140, 994–1003, https://doi.org/10.1016/j.renene.2019.03.117,
2019. a
Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study, Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, 2016.
a, b, c, d
Wagenaar, J., Machielse, L., and Schepers, J.: Controlling Wind in ECN's
Scaled Wind Farm, in: Proceeding of the EWEA Annual Meeting, 16–19 April,
Copenhagen, Denmark, ECN-M–12-007, 2012. a
Zahle, F. and Sørensen, N. N.: Overset grid flow simulation on a modern wind
turbine, in: AIAA 26th Applied Aerodynamic Conference, 18–21 August,
Honolulu, Hawaii, USA, AIAA 2008-6727, https://doi.org/10.2514/6.2008-6727, 2008. a
Short summary
Wake steering aims to redirect the wake away from a downstream turbine. This study explores the potential of a data-driven surrogate model whose equations can be interpreted physically. It estimates wake characteristics from measurable input variables by utilizing a simple linear model. The model shows encouraging results in estimating available power in the far wake, with significant improvements over currently used analytical models in conditions where wake steering is deemed most effective.
Wake steering aims to redirect the wake away from a downstream turbine. This study explores the...
Altmetrics
Final-revised paper
Preprint