Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2457-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-2457-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Adjusted spectral correction method for calculating extreme winds in tropical-cyclone-affected water areas
Department of Wind and Energy Systems, Technical University of Denmark, Risø Campus, Roskilde, Denmark
Søren Ott
Department of Wind and Energy Systems, Technical University of Denmark, Risø Campus, Roskilde, Denmark
Related authors
Nathalia Correa-Sánchez, Xiaoli Guo Larsén, Giorgia Fosser, Eleonora Dallan, Marco Borga, and Francesco Marra
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-111, https://doi.org/10.5194/wes-2025-111, 2025
Revised manuscript under review for WES
Short summary
Short summary
We examined the power spectra of wind speed in three convection-permitting models in central Europe and found these models have a better representation of wind variability characteristics than standard wind datasets like the New European Wind Atlas, due to different simulation approaches, providing more reliable extreme wind predictions.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Sara Müller, Xiaoli Guo Larsén, and Fei Hu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-7, https://doi.org/10.5194/wes-2025-7, 2025
Preprint under review for WES
Short summary
Short summary
Wind farms are being developed in areas prone to tropical cyclones. However, it remains unclear whether turbulence models in current design standards, such as the Mann uniform shear model, are suitable for these conditions. For the first time the Mann model is assessed using high-frequency tropical cyclone measurements from four typhoons. Enhanced spectral energy is found at low wavenumbers, especially in the crosswind component during typhoon conditions.
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024, https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Short summary
Tropical cyclone winds are challenging for wind turbines. We analyze a tropical cyclone before landfall in a mesoscale model. The simulated wind speeds and storm structure are sensitive to the boundary parametrization. However, independent of the boundary layer parametrization, the median change in wind speed and wind direction with height is small relative to wind turbine design standards. Strong spatial organization of wind shear and veer along the rainbands may increase wind turbine loads.
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024, https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Short summary
Wind farms impact local wind and turbulence. To incorporate these effects in weather forecasting, the explicit wake parameterization (EWP) is added to the forecasting model HARMONIE–AROME. We evaluate EWP using flight data above and downstream of wind farms, comparing it with an alternative wind farm parameterization and another weather model. Results affirm the correct implementation of EWP, emphasizing the necessity of accounting for wind farm effects in accurate weather forecasting.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Marc Imberger, Xiaoli Guo Larsén, and Neil Davis
Adv. Geosci., 56, 77–87, https://doi.org/10.5194/adgeo-56-77-2021, https://doi.org/10.5194/adgeo-56-77-2021, 2021
Short summary
Short summary
Events like mid-latitude storms with their high winds have an impact on wind energy production and forecasting of such events is crucial. This study investigates the capabilities of a global weather prediction model MPAS and looks at how key parameters like storm intensity, arrival time and duration are represented compared to measurements and traditional methods. It is found that storm intensity is represented well while model drifts negatively influence estimation of arrival time and duration.
Xiaoli G. Larsén and Jana Fischereit
Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, https://doi.org/10.5194/gmd-14-3141-2021, 2021
Short summary
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.
Nathalia Correa-Sánchez, Xiaoli Guo Larsén, Giorgia Fosser, Eleonora Dallan, Marco Borga, and Francesco Marra
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-111, https://doi.org/10.5194/wes-2025-111, 2025
Revised manuscript under review for WES
Short summary
Short summary
We examined the power spectra of wind speed in three convection-permitting models in central Europe and found these models have a better representation of wind variability characteristics than standard wind datasets like the New European Wind Atlas, due to different simulation approaches, providing more reliable extreme wind predictions.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Sara Müller, Xiaoli Guo Larsén, and Fei Hu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-7, https://doi.org/10.5194/wes-2025-7, 2025
Preprint under review for WES
Short summary
Short summary
Wind farms are being developed in areas prone to tropical cyclones. However, it remains unclear whether turbulence models in current design standards, such as the Mann uniform shear model, are suitable for these conditions. For the first time the Mann model is assessed using high-frequency tropical cyclone measurements from four typhoons. Enhanced spectral energy is found at low wavenumbers, especially in the crosswind component during typhoon conditions.
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024, https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Short summary
Tropical cyclone winds are challenging for wind turbines. We analyze a tropical cyclone before landfall in a mesoscale model. The simulated wind speeds and storm structure are sensitive to the boundary parametrization. However, independent of the boundary layer parametrization, the median change in wind speed and wind direction with height is small relative to wind turbine design standards. Strong spatial organization of wind shear and veer along the rainbands may increase wind turbine loads.
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024, https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Short summary
Wind farms impact local wind and turbulence. To incorporate these effects in weather forecasting, the explicit wake parameterization (EWP) is added to the forecasting model HARMONIE–AROME. We evaluate EWP using flight data above and downstream of wind farms, comparing it with an alternative wind farm parameterization and another weather model. Results affirm the correct implementation of EWP, emphasizing the necessity of accounting for wind farm effects in accurate weather forecasting.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Marc Imberger, Xiaoli Guo Larsén, and Neil Davis
Adv. Geosci., 56, 77–87, https://doi.org/10.5194/adgeo-56-77-2021, https://doi.org/10.5194/adgeo-56-77-2021, 2021
Short summary
Short summary
Events like mid-latitude storms with their high winds have an impact on wind energy production and forecasting of such events is crucial. This study investigates the capabilities of a global weather prediction model MPAS and looks at how key parameters like storm intensity, arrival time and duration are represented compared to measurements and traditional methods. It is found that storm intensity is represented well while model drifts negatively influence estimation of arrival time and duration.
Xiaoli G. Larsén and Jana Fischereit
Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, https://doi.org/10.5194/gmd-14-3141-2021, 2021
Short summary
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.
Cited articles
Abild, J., Mortensen, N., and Landberg, L.: Application of the wind atlas
method to extreme wind speed data, J. Wind Eng. Ind. Aerodyn., 41, 473–484, 1992. a
Andreas, E. L., Mahrt, L., and Vickers, D.: An improved bulk air-sea surface
flux algorithm, including spray-mediated transfer, Q. J. Roy. Meteorol. Soc., 141, 642–654, https://doi.org/10.1002/qj.2424, 2015. a
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteorol. Soc., 81,
639–640, 1955. a
Giammanco, I. M., Schroeder, J. L., and Powell, M. D.: GPS Dropwindsonde and
WSR-88D Observations of Tropical Cyclone Vertical Wind Profiles and Their
Characteristics, Weather Forecast., 28, 77–99,
https://doi.org/10.1175/WAF-D-11-00155.1, 2013. a
Hansen, B. O., Larsén, X. G., Kelly, M., Rathmann, O. S., Berg, J., Bechmann,
A., Sempreviva, A. M., and Jørgensen, H. E.: Extreme wind calculation
applying spectral correction method – test and validation, Tech. Rep., Wind Enery Department, Technical University of Denmark, DTU Wind Energy E-0098, 2016. a, b, c
Holland, G.: An analytic model of the wind and pressure profiles in
hurricanes, Mon. Weather Rev., 1212–1218 pp., 1980. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113, 13013, https://doi.org/10.1029/2008JD009944, 2008. a
Imberger, M. and Larsén, X. G.: Sensitivity and quality assessment of global
50-year return winds using reanalysis products and measurements, WindEurope, https://windeurope.org/annual2022/conference/posters/PO254/ (last access: 4 December 2022), 2022. a
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale
models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Meteor. Monogr., Ameri. Meteor. Soc., 24, 165–170, 1993. a
Larsén, X. G. and Ott, S.: Dataset to adjusted spectral correction method for
calculating extreme winds in tropical cyclone affected water areas, Zenodo [data set], https://doi.org/10.5281/zenodo.7089426, 2022. a, b
Larsén, X. G., Vincent, C. L., and Larsen, S.: Spectral structure of the
mesoscale winds over the water, Q. J. Roy. Meteorol. Soc., 139, 685–700,
https://doi.org/10.1002/qj.2003, 2013. a
Larsén, X. G., Du, J., Bolaños, R., Imberger, M., Kelly, M. C.,
Badger, M., and Larsen, S.: Estimation of offshore extreme wind from
wind-wave coupled modeling, Wind Energy, 22, 1043–1057,
https://doi.org/10.1002/we.2339, 2019. a
Larsén, X. G., Davis, N., Hannesdottir, A., Kelly, M., Svenningsen, L., Slot,
R., Imberger, M., Olsen, B., and Floors, R.: The Global Atlas for Siting
Parameters (GASP) project: extreme wind, turbulence and turbine classes, Wind
Energy, 25, 1841–1859, https://doi.org/10.1002/we.2771, 2022. a, b
Lindborg, E.: Can the atmospheric kinetic energy spectrum be explained by
two-dimensional turbulence?, J. Fluid Mech., 388, 259–288, 1999. a
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure
model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn, 87,
895–912, 2009. a
NCAR/UCAR: CFSR data, CFSv2 [data set], https://rda.ucar.edu/datasets/ds094.1, last access: 28 February 2022. a
NOAA: An Inventory of Tropical Cyclone Tracks, NOAA [data set], https://doi.org/10.25921/82ty-9e16, 2017. a
Ott, S.: Extreme winds in the western North Pacific, Tech. Rep.
Risoe-R-1544(EN), Risø National Laboratory, Roskilde, Denmark,
https://orbit.dtu.dk/en/publications/extreme-winds-in-the-western-north-pacific (last access: 4 December 2022), 2005. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Powell, M. D., Vickery, P. J., and Reinhold, T. A.: Reduced drag coefficient
for high wind speeds in tropical cyclones, Nature, 422, 279–283, 2003. a
Pryor, S. and Bartelmie, R. J.: A global assessment of extreme wind speeds for wind energy applications, Nature Energy, 6, 268–276,
https://doi.org/10.1038/s41560-020-00773-7, 2021. a
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., ya Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and
Goldberg, M.: The NCEP Climate Forecast System Reanalysis, Bull.
Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010.
a
Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of winter
precipitation using an improved bulk microphysics scheme, Part-I: Description
and sensitivity analysis, Mon. Weather Rev., 132, 519–542, 2004. a
Yu, Q., Kim, K., and Lo, T.: Design Standards for Offshore Wind Farms, Tech.
Rep., American Bureau of Shipping, contract M10PC00105, https://www.bsee.gov/sites/bsee.gov/files/tap-technical-assessment-program/670aa.pdf (last access: 4 December 2022), 2011. a
Zijlema, M. and van der Westhuysen, A. J.: On convergence behaviour and
numerical accuracy in stationary SWAN simulations of nearshore wind wave
spectra, Coast. Eng., 52, 237–256,
https://doi.org/10.1016/j.coastaleng.2004.12.006, 2005. a
Short summary
A method is developed for calculating the extreme wind in tropical-cyclone-affected water areas. The method is based on the spectral correction method that fills in the missing wind variability to the modeled time series, guided by best track data. The paper provides a detailed recipe for applying the method and the 50-year winds of equivalent 10 min temporal resolution from 10 to 150 m in several tropical-cyclone-affected regions.
A method is developed for calculating the extreme wind in tropical-cyclone-affected water areas....
Altmetrics
Final-revised paper
Preprint