Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2497-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-2497-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lifetime prediction of turbine blades using global precipitation products from satellites
Department of Wind and Energy Systems, Technical University of
Denmark, Roskilde, 4000, Denmark
Haichen Zuo
Department of Wind and Energy Systems, Technical University of
Denmark, Roskilde, 4000, Denmark
Ásta Hannesdóttir
Department of Wind and Energy Systems, Technical University of
Denmark, Roskilde, 4000, Denmark
Abdalmenem Owda
Department of Wind and Energy Systems, Technical University of
Denmark, Roskilde, 4000, Denmark
Charlotte Hasager
Department of Wind and Energy Systems, Technical University of
Denmark, Roskilde, 4000, Denmark
Related authors
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021, https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.
Tobias Ahsbahs, Galen Maclaurin, Caroline Draxl, Christopher R. Jackson, Frank Monaldo, and Merete Badger
Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020, https://doi.org/10.5194/wes-5-1191-2020, 2020
Short summary
Short summary
Before constructing wind farms we need to know how much energy they will produce. This requires knowledge of long-term wind conditions from either measurements or models. At the US East Coast there are few wind measurements and little experience with offshore wind farms. Therefore, we created a satellite-based high-resolution wind resource map to quantify spatial variations in the wind conditions over potential sites for wind farms and found larger variation than modelling suggested.
Esperanza Soto Sagredo, Søren Juhl Andersen, Ásta Hannesdóttir, and Jennifer Marie Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-148, https://doi.org/10.5194/wes-2025-148, 2025
Preprint under review for WES
Short summary
Short summary
We developed and tested three methods to estimate wind speed variations across the entire rotor area of a wind turbine using lidar data. Unlike traditional approaches that focus on average wind speed, our methods capture detailed inflow structures. This allows the turbine to anticipate changes, improving control and reducing wear – provided the estimation settings are properly selected.
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024, https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Short summary
Leading-edge erosion (LEE) can impact wind turbine aerodynamics and wind farm efficiency. This study couples LEE prediction, aerodynamic loss modeling, and wind farm flow modeling to show that LEE's effects on wake dynamics can affect overall energy production. Without preventive initiatives, the effects of LEE increase over time, resulting in significant annual energy production (AEP) loss.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023, https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary
Short summary
Aeolus is a satellite equipped with a Doppler wind lidar to detect global wind profiles. This study evaluates the impact of Aeolus winds on surface wind forecasts over tropical oceans and high-latitude regions based on the ECMWF observing system experiments. We find that Aeolus can slightly improve surface wind forecasts for the region > 60° N, especially from day 5 onwards. For other study regions, the impact of Aeolus is nearly neutral or limited, which requires further investigation.
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Ásta Hannesdóttir, David R. Verelst, and Albert M. Urbán
Wind Energ. Sci., 8, 231–245, https://doi.org/10.5194/wes-8-231-2023, https://doi.org/10.5194/wes-8-231-2023, 2023
Short summary
Short summary
In this work we use observations of large coherent fluctuations to define a probabilistic gust model. The gust model provides the joint description of the gust rise time, amplitude, and direction change. We perform load simulations with a coherent gust according to the wind turbine safety standard and with the probabilistic gust model. A comparison of the simulated loads shows that the loads from the probabilistic gust model can be significantly higher due to variability in the gust parameters.
Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen
Wind Energ. Sci., 8, 173–191, https://doi.org/10.5194/wes-8-173-2023, https://doi.org/10.5194/wes-8-173-2023, 2023
Short summary
Short summary
This paper presents a data-driven framework for modeling erosion damage based on real blade inspections and mesoscale weather data. The outcome of the framework is a machine-learning-based model that can predict and/or forecast leading-edge erosion damage based on weather data and user-specified wind turbine characteristics. The model output fits directly into the damage terminology used by the industry and can therefore support site-specific maintenance planning and scheduling of repairs.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021, https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Tobias Ahsbahs, Galen Maclaurin, Caroline Draxl, Christopher R. Jackson, Frank Monaldo, and Merete Badger
Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020, https://doi.org/10.5194/wes-5-1191-2020, 2020
Short summary
Short summary
Before constructing wind farms we need to know how much energy they will produce. This requires knowledge of long-term wind conditions from either measurements or models. At the US East Coast there are few wind measurements and little experience with offshore wind farms. Therefore, we created a satellite-based high-resolution wind resource map to quantify spatial variations in the wind conditions over potential sites for wind farms and found larger variation than modelling suggested.
Cited articles
Arulraj, M. and Barros, A. P.: Shallow precipitation detection and classification using multifrequency radar observations and model simulations, J. Atmos. Ocean. Tech., 34, 1963–1983, https://doi.org/10.1175/JTECH-D-17-0060.1, 2017.
Bak, C., Forsting, A. M., and Sørensen, N. N.: The influence of leading
edge roughness, rotor control and wind climate on the loss in energy production, J. Phys.: Conf. Ser., 1618, 052050,
https://doi.org/10.1088/1742-6596/1618/5/052050, 2020.
Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine
blade leading edges by reducing the tip speed during extreme precipitation
events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018.
Bech, J. I., Johansen, N. F.-J., Madsen, M. B., Hannesdóttir, Á., and Hasager, C. B.: Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades, Renew. Energy, 197, 776–789, https://doi.org/10.1016/j.renene.2022.06.127, 2022.
Best, A. C.: The size of distribution of raindrops, Q. J. Roy. Meteorol. Soc., 76, 16–36, https://doi.org/10.1002/qj.49707632704, 1950.
Bogerd, L., Overeem, A., Leijnse, H., and Uijlenhoet, R.: A comprehensive
five-year evaluation of IMERG late run precipitation estimates over the
Netherlands, J. Hydrometeorol., 22, 1855-1868, https://doi.org/10.1175/JHM-D-21-0002.1,
2021.
Chen, F. and Li, X.: Evaluation of IMERG and TRMM 3B43 monthly precipitation
products over mainland China, Remote Sens., 8, 472, https://doi.org/10.3390/rs8060472, 2016.
Cui, W., Dong, X., Xi, B., Feng, Z. H. E., and Fan, J.: Can the GPM IMERG
final product accurately represent MCSs' precipitation characteristics over the central and eastern United States?, J. Hydrometeorol., 21, 39–57,
https://doi.org/10.1175/JHM-D-19-0123.1, 2020.
Dezfuli, A. K., Ichoku, C. M., Mohr, K. I., and Huffman, G. J.: Precipitation characteristics in West and East Africa from satellite and in situ observations, J. Hydrometeorol., 18, 1799–1805, https://doi.org/10.1175/JHM-D-17-0068.1, 2017.
Eisenberg, D., Laustsen, S., and Stege, J.: Wind turbine blade coating leading edge rain erosion model: Development and validation, Wind Energy, 21, 942–951, https://doi.org/10.1002/we.2200, 2018.
Freitas, da S. E., Coelho, V. H. R., Xuan, Y., de Melo, D. C. D., Gadelha, A. N., Santos, E. A., de Galvão, C. O., Ramos, F., Geraldo, M., Barbosa, L. M., Huffman, G. J., Petersen, W. A., and Almeida das N., C.: The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties, J. Hydrol., 589, 125128, https://doi.org/10.1016/j.jhydrol.2020.125128, 2020.
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypiński, W. R., Scott, G.,
Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.:
Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine (NREL/TP-5000-75698), National Renewable Energy Laboratory, Golden, CO, USA, https://www.nrel.gov/docs/fy20osti/75698.pdf (last access: 14 December 2022), 2020.
Hasager, C. B., Vejen, F., Bech, J. I., Skrzypiński, W. R., Tilg, A.-M.,
and Nielsen, M.: Assessment of the rain and wind climate with focus on wind
turbine blade leading edge erosion rate and expected lifetime in Danish Seas, Renew. Energy, 149, 91–102, https://doi.org/10.1016/j.renene.2019.12.043, 2020.
Hasager, C. B., Vejen, F., Skrzypinski, W. R., and Tilg, A.-M.: Rain Erosion
Load and Its Effect on Leading edge Lifetime and Potential of Erosion-Safe
Mode at Wind Turbines in the North Sea and Baltic Sea, Energies, 14, 1959, https://doi.org/10.3390/en14071959, 2021.
Herring, R., Dyer, K., Martin, F., and Ward, C.: The increasing importance of leading edge erosion and a review of existing protection solutions, Renew.
Sustain. Energ. Rev., 115, 109382, https://doi.org/10.1016/j.rser.2019.109382, 2019.
Herring, R., Dyer, K., Howkins, P., and Ward, C.: Characterisation of the
offshore precipitation environment to help combat leading edge erosion of wind turbine blades, Wind Energ. Sci., 5, 1399–1409, https://doi.org/10.5194/wes-5-1399-2020, 2020.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation
measurement mission, B. Am. Meteorol. Soc., 95, 701–722,
https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Hsu, S. A., Meindl, E. A., and Gilhousen, D. B.: Determining the power-law
wind-profile exponent under near-neutral stability conditions at sea, J. Appl. Meteorol. Clim., 33, 757-765, https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2, 1994.
Huffman, G.: IMERG V06 Quality Index, NASA, USA,
https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERGV06_QI.pdf
(last access: 14 December 2022), 2019.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. and Tan, J.:
GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K. L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D.
B., and Xie, P.: Integrated Multi-satellite Retrievals for the Global
Precipitation Measurement (GPM) Mission (IMERG), Adv. Global Change Res., 67,
343–353, https://doi.org/10.1007/978-3-030-24568-9_19, 2020a.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., and Tan, J.: Integrated
Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation, NASA,
USA,
https://gpm.nasa.gov/resources/documents/IMERG-V06-Technical-Documentation
(last access: 14 December 2022), 2020b.
Ibrahim, M. E. and Medraj, M.: Water droplet erosion of wind turbine blades:
Mechanics, testing, modeling and future perspectives, Materials, 13, 157,
https://doi.org/10.3390/ma13010157, 2020.
Keegan, M. H., Nash, D. H., and Stack, M. M.: On erosion issues associated
with the leading edge of wind turbine blades, J. Phys. D, 46, 383001, https://doi.org/10.1088/0022-3727/46/38/383001, 2013.
Kidd, C., Becker, A., Huffman, G., Muller, C., Joe, P., Jackson, G., and
Kirschbaum, D.: So, how much of the Earth's surface is covered by rain
gauges?, B. Am. Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-00283.1, 2017.
Klepp, C., Kucera, P. A., Burdanowitz, J., and Protat, A.: OceanRAIN – The
Global Ocean Surface-Reference Dataset for Characterization, Validation and
Evaluation of the Water Cycle, in: Satellite Precipitation Measurement.
Advances in Global Change Research, 69, edited by: Levizzani, V., Kidd, C.,
Kirschbaum, D., Kummerow, C., Nakamura, K., and Turk, F., Springer, Cham,
https://doi.org/10.1007/978-3-030-35798-6_10, 2020.
Law, H. and Koutsos, V.: Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms, Wind Energy, 23, 1955–1965, https://doi.org/10.1002/we.2540, 2020.
Le, M. and Chandrasekar, V.: An algorithm for drop-size distribution retrieval from GPM dual-frequency precipitation radar, IEEE T. Geosci. Remote, 52, 6813630, https://doi.org/10.1109/TGRS.2014.2308475, 2014.
Letson, F., Barthelmie, R. J., and Pryor, S. C.: Radar-derived precipitation
climatology for wind turbine blade leading edge erosion, Wind Energ. Sci., 5, 331–347, https://doi.org/10.5194/wes-5-331-2020, 2020.
Macdonald, H., Infield, D., Nash, D. H., and Stack, M. M.: Mapping hail
meteorological observations for prediction of erosion in wind turbines: UK hail meteorological observations, Wind Energy, 19, 777–784, https://doi.org/10.1002/we.1854, 2016.
Maranan, M., Fink, A. H., Knippertz, P., Amekudzi, L. K., Atiah, W. A., and
Stengel, M.: A process-based validation of GPM IMERG and its sources using a
mesoscale rain gauge network in the west African forest zone, J. Hydrometeorol., 21, 729–749, https://doi.org/10.1175/JHM-D-19-0257.1, 2020.
Met Office: Water, Fact sheet 3 — Water in the atmosphere, Met Office,
Exeter, UK,
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/factsheets/factsheet_3-water-in-the-atmosphere-v02.pdf
(last access: 14 December 2022), 2012.
Mishnaevsky, L. and Thomsen, K.: Costs of repair of wind turbine blades: Influence of technology 695 aspects, Wind Energy, 23, 2247–2255,
https://doi.org/10.1002/we.2552, 2020.
Mishnaevsky Jr., L., Hasager, C. B., Bak, C., Tilg, A.-M., Bech, J. I., Rad,
S. D., and Fæster, S.: Rain erosion of wind turbine blades: Understanding, prevention and protection, Renew. Energy, 169, 953–969,
https://doi.org/10.1016/j.renene.2021.01.044, 2021.
Prakash, S., Mitra, A. K., AghaKouchak, A., Liu, Z., Norouzi, H., and Pai, D. S.: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region, J. Hydrol., 556, 865–876,
https://doi.org/10.1016/j.jhydrol.2016.01.029, 2018.
Prieto, R. and Karlsson, T.: A model to estimate the effect of variables causing erosion in wind turbine blades, Wind Energy, 24, 1031–1044,
https://doi.org/10.1002/we.2615, 2021.
Rios Gaona, M. F., Overeem, A., Leijnse, H., and Uijlenhoet, R.: First-year
evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (V03D), J. Hydrometeorol., 17, 2799–2814, https://doi.org/10.1175/JHM-D-16-0087.1, 2016.
Shaw, W. J., Berg, L. K., Debnath, M., Deskos, G., Draxl, C., Ghate, V. P., Hasager, C. B., Kotamarthi, R., Mirocha, J. D., Muradyan, P., Pringle, W. J., Turner, D. D., and Wilczak, J. M.: Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer, Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, 2022.
Skrzypiński, W. R., Bech, J. I., Hasager, C. B., Tilg, A.-M., Bak, C.,
and Vejen, F.: Optimization of the erosion-safe operation of the IEA Wind 15 MW Reference Wind Turbine, J. Phys.: Conf. Ser., 1618, 052034,
https://doi.org/10.1088/1742-6596/1618/5/052034, 2020.
Tan, J., Petersen, W. A., and Tokay, A.: A novel approach to identify sources of errors in IMERG for GPM ground validation, J. Hydrometeorol., 17, 2477–2491, https://doi.org/10.1175/JHM-D-16-0079.1, 2016.
Tapiador, F. J., Navarro, A., García-Ortega, E., Merino, A., Sánchez, J. L., Marcos, C., and Kummerow, C.: The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain, J. Hydrometeorol., 21, 161–182, https://doi.org/10.1175/JHM-D-19-0116.1, 2020.
Tilg, A.-M., Skrzypiński, W. R., Hannesdóttir, Á., and Hasager, C. B.: Effect of drop-size parameterization and rain amount on blade-lifetime calculations considering leading edge erosion, Wind Energy, 25, 952–967, https://doi.org/10.1002/we.2710, 2022.
Tokay, A., D'Adderio, L. P., Porcù, F., Wolff, D. B., and Petersen, W.
A.: A field study of footprint-scale variability of raindrop size distribution, J. Hydrometeorol., 18, 3165–3179,
https://doi.org/10.1175/jhm-d-17-0003.1, 2017.
Verma, A. S., Jiang, Z., Caboni, M., Verhoef, H., van der Mijle Meijer, H.,
Castro, S. G. P., and Teuwen, J. J. E.: A probabilistic rainfall model to
estimate the leading-edge lifetime of wind turbine blade coating system, Renew. Energy, 178, 1435–1455, https://doi.org/10.1016/j.renene.2021.06.122, 2021a.
Verma, A. S., Jiang, Z., Ren, Z., Caboni, M., Verhoef, H., van der
Mijle-Meijer, H., Castro, S. G. P., and Teuwen, J. J. E.: A probabilistic
long-term framework for site-specific erosion analysis of wind turbine blades: A case study of 31 Dutch sites, Wind Energy, 24, 1315–1336, https://doi.org/10.1002/we.2634, 2021b.
Visbech, J., Göçmen, T., Hasager, C. B., Shkalov, H., Handberg, M., and Nielsen, K. P.: Introducing a data-driven approach to predict site-specific leading edge erosion, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2022-55, in review, 2022.
Xiong, W., Tang, G., Wang, T., Ma, Z., and Wan, W.: Evaluation of IMERG and
ERA5 Precipitation-Phase Partitioning on the Global Scale, Water, 14, 1122, https://doi.org/10.3390/w14071122, 2022.
Short summary
When wind turbine blades are exposed to strong winds and heavy rainfall, they may be damaged and their efficiency reduced. The problem is most pronounced offshore where turbines are tall and the climate is harsh. Satellites provide global half-hourly rain observations. We use these rain data as input to a model for blade lifetime prediction and find that the satellite-based predictions agree well with predictions based on observations from weather stations on the ground.
When wind turbine blades are exposed to strong winds and heavy rainfall, they may be damaged and...
Altmetrics
Final-revised paper
Preprint