Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2497-2022
https://doi.org/10.5194/wes-7-2497-2022
Research article
 | 
20 Dec 2022
Research article |  | 20 Dec 2022

Lifetime prediction of turbine blades using global precipitation products from satellites

Merete Badger, Haichen Zuo, Ásta Hannesdóttir, Abdalmenem Owda, and Charlotte Hasager

Related authors

Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021,https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
US East Coast synthetic aperture radar wind atlas for offshore wind energy
Tobias Ahsbahs, Galen Maclaurin, Caroline Draxl, Christopher R. Jackson, Frank Monaldo, and Merete Badger
Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020,https://doi.org/10.5194/wes-5-1191-2020, 2020
Short summary

Cited articles

Arulraj, M. and Barros, A. P.: Shallow precipitation detection and classification using multifrequency radar observations and model simulations, J. Atmos. Ocean. Tech., 34, 1963–1983, https://doi.org/10.1175/JTECH-D-17-0060.1, 2017. 
Bak, C., Forsting, A. M., and Sørensen, N. N.: The influence of leading edge roughness, rotor control and wind climate on the loss in energy production, J. Phys.: Conf. Ser., 1618, 052050, https://doi.org/10.1088/1742-6596/1618/5/052050, 2020. 
Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018. 
Bech, J. I., Johansen, N. F.-J., Madsen, M. B., Hannesdóttir, Á., and Hasager, C. B.: Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades, Renew. Energy, 197, 776–789, https://doi.org/10.1016/j.renene.2022.06.127, 2022. 
Best, A. C.: The size of distribution of raindrops, Q. J. Roy. Meteorol. Soc., 76, 16–36, https://doi.org/10.1002/qj.49707632704, 1950. 
Download
Short summary
When wind turbine blades are exposed to strong winds and heavy rainfall, they may be damaged and their efficiency reduced. The problem is most pronounced offshore where turbines are tall and the climate is harsh. Satellites provide global half-hourly rain observations. We use these rain data as input to a model for blade lifetime prediction and find that the satellite-based predictions agree well with predictions based on observations from weather stations on the ground.
Share
Altmetrics
Final-revised paper
Preprint