Articles | Volume 8, issue 7
https://doi.org/10.5194/wes-8-1225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-1225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts
Maaike Sickler
Ventolines B.V., P.J. Oudweg 4, 1314 CH Almere, the Netherlands
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
DTU Wind Energy, Frederiksborgvej 399, 4000 Roskilde, Denmark
Bart Ummels
Ventolines B.V., P.J. Oudweg 4, 1314 CH Almere, the Netherlands
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Michiel Zaaijer
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
Katherine Dykes
DTU Wind Energy, Frederiksborgvej 399, 4000 Roskilde, Denmark
Related authors
No articles found.
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci., 9, 2261–2282, https://doi.org/10.5194/wes-9-2261-2024, https://doi.org/10.5194/wes-9-2261-2024, 2024
Short summary
Short summary
This article presents a tow test procedure for measuring the steering behaviour of tethered membrane wings. The experimental set-up includes a novel onboard sensor system for measuring the position and orientation of the towed wing, complemented by an attached low-cost multi-hole probe for measuring the relative flow velocity vector at the wing. The measured data (steering gain and dead time) can be used to improve kite models and simulate the operation of airborne wind energy systems.
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-161, https://doi.org/10.5194/wes-2024-161, 2024
Preprint under review for WES
Short summary
Short summary
This paper presents a methodology for system design of airborne wind energy (AWE). A multi-disciplinary design, analysis, and optimization (MDAO) framework was developed, integrating power, energy production, and cost models for fixed-wing ground-generation (GG) AWE systems. Using the levelized cost of electricity (LCoE) as the design objective, we found that the optimal size of systems lies between the rated power of 100 kW and 1000 kW.
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024, https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
Short summary
This paper presents a fast cycle–power computation model for fixed-wing ground-generation airborne wind energy systems. It is suitable for sensitivity and scalability studies, which makes it a valuable tool for design and innovation trade-offs. It is also suitable for integration with cost models and systems engineering tools, enhancing its applicability in assessing the potential of airborne wind energy in the broader energy system.
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet van Gool, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-125, https://doi.org/10.5194/wes-2024-125, 2024
Preprint under review for WES
Short summary
Short summary
This study investigates noise annoyance caused by airborne wind energy systems (AWESs), a novel wind energy technology that uses kites to harness high-altitude winds. Through a listening experiment with 75 participants, sharpness was identified as the key factor predicting annoyance. Fixed-wing kites generated more annoyance than soft-wing kites, likely due to their sharper, more tonal sound. The findings can help improve AWESs’ designs, reducing noise-related disturbances for nearby residents.
Shadan Mozafari, Jennifer Rinker, Paul Veers, and Katherine Dykes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-68, https://doi.org/10.5194/wes-2024-68, 2024
Revised manuscript under review for WES
Short summary
Short summary
The study clarifies the use of probabilistic extrapolation of short/mid-term data for long-term site-specific fatigue assessments. In addition, it assesses the accountability of the Frandsen model in the Lillgrund wind farm as an example of compact layout.
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024, https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary
Short summary
We present a novel two-point model of a kite with a suspended control unit to describe the characteristic swinging motion of this assembly during turning manoeuvres. Quasi-steady and dynamic model variants are combined with a discretised tether model, and simulation results are compared with measurement data of an instrumented kite system. By resolving the pitch of the kite, the model allows for computing the angle of attack, which is essential for estimating the generated aerodynamic forces.
Mihir Kishore Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-43, https://doi.org/10.5194/wes-2024-43, 2024
Revised manuscript accepted for WES
Short summary
Short summary
In a subsidy-free era, there is a need to optimize turbines to maximize the revenue of the farm instead of minimizing the LCoE. A wind farm-level modeling framework with a simplified market model to optimize the size of wind turbines to maximize revenue-based metrics like IRR/NPV. The results show that the optimum turbine size is driven mainly by the choice of the economic metric and the market price scenario, with an LCoE-optimized design already performing well w.r.t. metrics like IRR.
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024, https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Short summary
Turbulence is one of the main drivers of fatigue in wind turbines. There is some debate on how to model the turbulence in normal wind conditions in the design phase. To address such debates, we study the fatigue load distribution and reliability following different models of the International Electrotechnical Commission 61400-1 standard. The results show the lesser importance of load uncertainty due to turbulence distribution compared to the uncertainty of material resistance and Miner’s rule.
Amalia Ida Hietanen, Thor Heine Snedker, Katherine Dykes, and Ilmas Bayati
Wind Energ. Sci., 9, 417–438, https://doi.org/10.5194/wes-9-417-2024, https://doi.org/10.5194/wes-9-417-2024, 2024
Short summary
Short summary
The layout of a floating offshore wind farm was optimized to maximize the relative net present value (NPV). By modeling power generation, losses, inter-array cables, anchors and operational costs, an increase of EUR 34.5 million in relative NPV compared to grid-based layouts was achieved. A sensitivity analysis was conducted to examine the impact of economic factors, providing valuable insights. This study contributes to enhancing the efficiency and cost-effectiveness of floating wind farms.
Mihir Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci., 9, 141–163, https://doi.org/10.5194/wes-9-141-2024, https://doi.org/10.5194/wes-9-141-2024, 2024
Short summary
Short summary
Turbines are becoming larger. However, it is important to understand the key drivers of turbine design and explore the possibility of a global optimum, beyond which further upscaling might not reduce the cost of energy. This study explores, for a typical farm, the entire turbine design space with respect to rated power and rotor diameter. The results show a global optimum that is subject to various modeling uncertainties, farm design conditions, and policies with respect to wind farm tendering.
Lena Kitzing, David Rudolph, Sophie Nyborg, Helena Solman, Tom Cronin, Gundula Hübner, Elizabeth Gill, Katherine Dykes, Suzanne Tegen, and Julia Kirch Kirkegaard
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-174, https://doi.org/10.5194/wes-2023-174, 2024
Preprint withdrawn
Short summary
Short summary
Social aspects are gaining traction in wind energy. A recent publication by Kirkegaard et al. lays out social grand challenges. We discuss them for a more technologically focused audience. We describe the role of social sciences in wind energy research, showing insights, topics, and value-added for public engagement and planning, just ownership and value-based design. We reflect how social and technical sciences can jointly advance wind energy research into a new interdisciplinary era.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021, https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary
Short summary
We present a technique to support the optimal layout (placement) of wind turbines in a wind farm. It efficiently determines good directions and distances for moving turbines. An improved layout reduces production losses and so makes the farm project economically more attractive. Compared to most existing techniques, our approach requires less time. This allows wind farm designers to explore more alternatives and provides the flexibility to adapt the layout to site-specific requirements.
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020, https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Short summary
We have presented a methodology for including multiple wind profile shapes in a wind resource description that are identified using a data-driven approach. These shapes go beyond the height range for which conventional wind profile relationships are developed. Moreover, they include non-monotonic shapes such as low-level jets. We demonstrated this methodology for an on- and offshore reference location using DOWA data and efficiently estimated the annual energy production of a pumping AWE system.
Julian Quick, Jennifer King, Ryan N. King, Peter E. Hamlington, and Katherine Dykes
Wind Energ. Sci., 5, 413–426, https://doi.org/10.5194/wes-5-413-2020, https://doi.org/10.5194/wes-5-413-2020, 2020
Short summary
Short summary
We investigate the trade-offs in optimization of wake steering strategies, where upstream turbines are positioned to deflect wakes away from downstream turbines, with a probabilistic perspective. We identify inputs that are sensitive to uncertainty and demonstrate a realistic optimization under uncertainty for a wind power plant control strategy. Designing explicitly around uncertainty yielded control strategies that were generally less aggressive and more robust to the uncertain input.
Erik Quaeghebeur and Michiel B. Zaaijer
Wind Energ. Sci., 5, 285–308, https://doi.org/10.5194/wes-5-285-2020, https://doi.org/10.5194/wes-5-285-2020, 2020
Short summary
Short summary
Meteorological and oceanic datasets are fundamental to the modeling of offshore wind farms. Data quality issues in one such dataset led us to conduct a study to establish whether such issues are more generally present in these datasets. The answer is yes and users should be aware of this. We therefore also investigated how such issues can be avoided. The result is a set of techniques and recommendations for dataset producers, leading to substantial quality improvements with limited extra effort.
Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, and Michiel B. Zaaijer
Wind Energ. Sci., 5, 259–284, https://doi.org/10.5194/wes-5-259-2020, https://doi.org/10.5194/wes-5-259-2020, 2020
Short summary
Short summary
The design and management of an offshore wind farm involve expertise in many disciplines. It is hard for a single person to maintain the overview needed. Therefore, we have created WESgraph, a knowledge base for the wind farm domain, implemented as a graph database. It stores descriptions of the multitude of domain concepts and their various interconnections. It allows users to explore the domain and search for relationships within and across disciplines, enabling various applications.
Jan Hummel, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci., 4, 41–55, https://doi.org/10.5194/wes-4-41-2019, https://doi.org/10.5194/wes-4-41-2019, 2019
Short summary
Short summary
We describe a tow test setup for the reproducible measurement of aerodynamic, structural dynamic and flight dynamic properties of tethered membrane wings. The test procedure is based on repeatable automated maneuvers with the entire kite system under realistic conditions. The developed measurement method can be used to quantitatively compare different wing designs, to validate and improve simulation models, and to systematically improve kite designs.
Johannes Oehler and Roland Schmehl
Wind Energ. Sci., 4, 1–21, https://doi.org/10.5194/wes-4-1-2019, https://doi.org/10.5194/wes-4-1-2019, 2019
Short summary
Short summary
We present an experimental method for aerodynamic characterization of flexible membrane kites by in situ measurement of the relative flow, while performing complex flight maneuvers. We find that the aerodynamics of this type of wing depend not only on the angle of attack, but also on the level of aerodynamic loading and the aeroelastic deformation. We recommend using the relative power setting of the kite as a secondary influencing parameter.
Tarek N. Dief, Uwe Fechner, Roland Schmehl, Shigeo Yoshida, Amr M. M. Ismaiel, and Amr M. Halawa
Wind Energ. Sci., 3, 275–291, https://doi.org/10.5194/wes-3-275-2018, https://doi.org/10.5194/wes-3-275-2018, 2018
Related subject area
Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Semi-Analytical Methodology for Fretting Wear Evaluation of the Pitch Bearing Raceways Under Operative and Non-Operative Periods
Identification of electro-mechanical interactions in wind turbines
Identification of operational deflection shapes of a wind turbine gearbox using fiber-optic strain sensors on a serial production end-of-line test bench
A sensitivity-based estimation method for investigating control co-design relevance
Validation of aeroelastic dynamic model of active trailing edge flap system tested on a 4.3 MW wind turbine
Effect of Blade Inclination Angle for Straight Bladed Vertical Axis Wind Turbines
Probabilistic cost modeling as a basis for optimizing the inspection and maintenance of support structures in offshore wind farms
Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses
Gradient-based wind farm layout optimization with inclusion and exclusion zones
A novel techno-economical layout optimization tool for floating wind farm design
Hybrid-Lambda: a low-specific-rating rotor concept for offshore wind turbines
Speeding up large-wind-farm layout optimization using gradients, parallelization, and a heuristic algorithm for the initial layout
Nonlinear vibration characteristics of virtual mass systems for wind turbine blade fatigue testing
Extreme wind turbine response extrapolation with the Gaussian mixture model
The effect of site-specific wind conditions and individual pitch control on wear of blade bearings
A neighborhood search integer programming approach for wind farm layout optimization
Enabling control co-design of the next generation of wind power plants
A data-driven reduced-order model for rotor optimization
Grand challenges in the design, manufacture, and operation of future wind turbine systems
Computational fluid dynamics (CFD) modeling of actual eroded wind turbine blades
Grand Challenges: wind energy research needs for a global energy transition
Current status and grand challenges for small wind turbine technology
CFD-based curved tip shape design for wind turbine blades
Impacts of wind field characteristics and non-steady deterministic wind events on time-varying main-bearing loads
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
David Cubillas, Mireia Olave, Iñigo Llavori, Ibai Ulacia, Jon Larrañaga, Aitor Zurutuza, and Arkaitz Lopez
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-78, https://doi.org/10.5194/wes-2024-78, 2024
Preprint under review for WES
Short summary
Short summary
In this work, we propose a methodology for evaluating fretting in wind turbine pitch bearing raceways, complemented by a detailed case study. The methodology considers the coupled effects of radial fretting and rotational fretting. The method was previously validated at laboratory and now it is applied to large 4 point contact ball bearings and the 5MW NREL reference turbine. The evaluation reveals critical times for damage initiation and indicate alarmingly short times for fretting initiation.
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024, https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
Short summary
Large direct-drive wind turbines, with a multi-megawatt power rating, face design challenges. Moving towards a more system-oriented design approach could potentially reduce mass and costs. Exploiting the full design space, though, may invoke interaction mechanisms, which have been neglected in the past. Based on coupled simulations, this work derives a better understanding of the electro-mechanical interaction mechanisms and identifies potential for design relevance.
Unai Gutierrez Santiago, Aemilius van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-83, https://doi.org/10.5194/wes-2024-83, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Knowing the loads applied to wind turbine gearboxes throughout their service life is becoming increasingly important. Operational deflection shapes identified from fiber-optic strain measurements have enabled the estimation of the gearbox input torque. This allows for future improvements in assessing the remaining useful life. Additionally, tracking the operational deflection shapes over time could enhance condition monitoring in planetary gear stages.
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024, https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Short summary
The controller of a wind turbine has an important role in regulating power production and avoiding structural failure. However, it is often designed after the rest of the turbine, and thus its potential is not fully exploited. An alternative is to design the structure and the controller simultaneously. This work develops a method to identify if a given turbine design can benefit from this new simultaneous design process. For example, a higher and cheaper turbine tower can be built this way.
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024, https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary
Short summary
Movable surfaces on wind turbine (WT) blades, called active flaps, can reduce the cost of wind energy. However, they still need extensive testing. This study shows that the computer model used to design a WT with flaps aligns well with measurements obtained from a 3month test on a commercial WT featuring a prototype flap. Particularly during flap actuation, there were minimal differences between simulated and measured data. These findings assure the reliability of WT designs incorporating flaps.
Laurence Boyd Morgan, Abbas Kazemi Amiri, William Leithead, and James Carroll
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-42, https://doi.org/10.5194/wes-2024-42, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This paper presents a systematic study into the effect of blade inclination angle, chord distribution, and blade length on vertical axis wind turbine performance. It is shown that for rotors of identical power production, both blade volume and rotor torque can be significantly reduced through the use of aerodynamically optimised inclined rotor blades. This demonstrates the potential of V-Rotors to reduce the cost of energy for offshore wind when compared to H-Rotors.
Muhammad Farhan, Ronald Schneider, Sebastian Thöns, and Max Gündel
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-176, https://doi.org/10.5194/wes-2023-176, 2024
Revised manuscript accepted for WES
Short summary
Short summary
This paper formulates and applies a probabilistic cost model to support the operational management of offshore wind farms. It provides the decision-theoretical basis for the optimization of I&M regimes with an emphasis on integrating the probabilistic cost model into the decision analysis. The proposed probabilistic cost model is then applied in a numerical example and a value of information analysis is performed to quantify the cost effectiveness of the identified optimal I&M strategy.
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024, https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Short summary
Wind farms at sea are becoming more densely clustered, which means that next to individual wind turbines interfering with each other in a single wind farm also interference between wind farms becomes important. Using a climate model, this study shows that the efficiency of wind farm clusters and the interference between the wind farms in the cluster depend strongly on the properties of the individual wind farms and are also highly sensitive to the spacing between the wind farms.
Javier Criado Risco, Rafael Valotta Rodrigues, Mikkel Friis-Møller, Julian Quick, Mads Mølgaard Pedersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 585–600, https://doi.org/10.5194/wes-9-585-2024, https://doi.org/10.5194/wes-9-585-2024, 2024
Short summary
Short summary
Wind energy developers frequently have to face some spatial restrictions at the time of designing a new wind farm due to different reasons, such as the existence of protected natural areas around the wind farm location, fishing routes, and the presence of buildings. Wind farm design has to account for these restricted areas, but sometimes this is not straightforward to achieve. We have developed a methodology that allows for different inclusion and exclusion areas in the optimization framework.
Amalia Ida Hietanen, Thor Heine Snedker, Katherine Dykes, and Ilmas Bayati
Wind Energ. Sci., 9, 417–438, https://doi.org/10.5194/wes-9-417-2024, https://doi.org/10.5194/wes-9-417-2024, 2024
Short summary
Short summary
The layout of a floating offshore wind farm was optimized to maximize the relative net present value (NPV). By modeling power generation, losses, inter-array cables, anchors and operational costs, an increase of EUR 34.5 million in relative NPV compared to grid-based layouts was achieved. A sensitivity analysis was conducted to examine the impact of economic factors, providing valuable insights. This study contributes to enhancing the efficiency and cost-effectiveness of floating wind farms.
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024, https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary
Short summary
This paper provides an innovative blade design methodology for offshore wind turbines with very large rotors compared to their rated power, which are tailored for an increased power feed-in at low wind speeds. Rather than designing the blade for a single optimized operational point, we include the application of peak shaving in the design process and introduce a design for two tip speed ratios. We describe how enlargement of the rotor diameter can be realized to improve the value of wind power.
Rafael Valotta Rodrigues, Mads Mølgaard Pedersen, Jens Peter Schøler, Julian Quick, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 321–341, https://doi.org/10.5194/wes-9-321-2024, https://doi.org/10.5194/wes-9-321-2024, 2024
Short summary
Short summary
The use of wind energy has been growing over the last few decades, and further increase is predicted. As the wind energy industry is starting to consider larger wind farms, the existing numerical methods for analysis of small and medium wind farms need to be improved. In this article, we have explored different strategies to tackle the problem in a feasible and timely way. The final product is a set of recommendations when carrying out trade-off analysis on large wind farms.
Aiguo Zhou, Jinlei Shi, Tao Dong, Yi Ma, and Zhenhui Weng
Wind Energ. Sci., 9, 49–64, https://doi.org/10.5194/wes-9-49-2024, https://doi.org/10.5194/wes-9-49-2024, 2024
Short summary
Short summary
This paper explores the nonlinear influence of the virtual mass mechanism on the test system in blade biaxial tests. The blade theory and simulation model are established to reveal the nonlinear amplitude–frequency characteristics of the blade-virtual-mass system. Increasing the amplitude of the blade or decreasing the seesaw length will lower the resonance frequency and load of the system. The virtual mass also affects the blade biaxial trajectory.
Xiaodong Zhang and Nikolay Dimitrov
Wind Energ. Sci., 8, 1613–1623, https://doi.org/10.5194/wes-8-1613-2023, https://doi.org/10.5194/wes-8-1613-2023, 2023
Short summary
Short summary
Wind turbine extreme response estimation based on statistical extrapolation necessitates using a small number of simulations to calculate a low exceedance probability. This is a challenging task especially if we require small prediction error. We propose the use of a Gaussian mixture model as it is capable of estimating a low exceedance probability with minor bias error, even with limited simulation data, having flexibility in modeling the distributions of varying response variables.
Arne Bartschat, Karsten Behnke, and Matthias Stammler
Wind Energ. Sci., 8, 1495–1510, https://doi.org/10.5194/wes-8-1495-2023, https://doi.org/10.5194/wes-8-1495-2023, 2023
Short summary
Short summary
Blade bearings are among the most stressed and challenging components of a wind turbine. Experimental investigations using different test rigs and real-size blade bearings have been able to show that rather short time intervals of only several hours of turbine operation can cause wear damage on the raceways of blade bearings. The proposed methods can be used to assess wear-critical operation conditions and to validate control strategies as well as lubricants for the application.
Juan-Andrés Pérez-Rúa, Mathias Stolpe, and Nicolaos Antonio Cutululis
Wind Energ. Sci., 8, 1453–1473, https://doi.org/10.5194/wes-8-1453-2023, https://doi.org/10.5194/wes-8-1453-2023, 2023
Short summary
Short summary
With the challenges of ensuring secure energy supplies and meeting climate targets, wind energy is on course to become the cornerstone of decarbonized energy systems. This work proposes a new method to optimize wind farms by means of smartly placing wind turbines within a given project area, leading to more green-energy generation. This method performs satisfactorily compared to state-of-the-art approaches in terms of the resultant annual energy production and other high-level metrics.
Andrew P. J. Stanley, Christopher J. Bay, and Paul Fleming
Wind Energ. Sci., 8, 1341–1350, https://doi.org/10.5194/wes-8-1341-2023, https://doi.org/10.5194/wes-8-1341-2023, 2023
Short summary
Short summary
Better wind farms can be built by simultaneously optimizing turbine locations and control, which is currently impossible or extremely challenging because of the size of the problem. The authors present a method to determine optimal wind farm control as a function of the turbine locations, which enables turbine layout and control to be optimized together by drastically reducing the size of the problem. In an example, a wind farm's performance improves by 0.8 % when optimized with the new method.
Nicholas Peters, Christopher Silva, and John Ekaterinaris
Wind Energ. Sci., 8, 1201–1223, https://doi.org/10.5194/wes-8-1201-2023, https://doi.org/10.5194/wes-8-1201-2023, 2023
Short summary
Short summary
Wind turbines have increasingly been leveraged as a viable approach for obtaining renewable energy. As such, it is essential that engineers have a high-fidelity, low-cost approach to modeling rotor load distributions. In this study, such an approach is proposed. This modeling approach was shown to make high-fidelity predictions at a low computational cost for rotor distributed-pressure loads as rotor geometry varied, allowing for an optimization of the rotor to be completed.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Kisorthman Vimalakanthan, Harald van der Mijle Meijer, Iana Bakhmet, and Gerard Schepers
Wind Energ. Sci., 8, 41–69, https://doi.org/10.5194/wes-8-41-2023, https://doi.org/10.5194/wes-8-41-2023, 2023
Short summary
Short summary
Leading edge erosion (LEE) is one of the most critical degradation mechanisms that occur with wind turbine blades. A detailed understanding of the LEE process and the impact on aerodynamic performance due to the damaged leading edge is required to optimize blade maintenance. Providing accurate modeling tools is therefore essential. This novel study assesses CFD approaches for modeling high-resolution scanned LE surfaces from an actual blade with LEE damages.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Alessandro Bianchini, Galih Bangga, Ian Baring-Gould, Alessandro Croce, José Ignacio Cruz, Rick Damiani, Gareth Erfort, Carlos Simao Ferreira, David Infield, Christian Navid Nayeri, George Pechlivanoglou, Mark Runacres, Gerard Schepers, Brent Summerville, David Wood, and Alice Orrell
Wind Energ. Sci., 7, 2003–2037, https://doi.org/10.5194/wes-7-2003-2022, https://doi.org/10.5194/wes-7-2003-2022, 2022
Short summary
Short summary
The paper is part of the Grand Challenges Papers for Wind Energy. It provides a status of small wind turbine technology in terms of technical maturity, diffusion, and cost. Then, five grand challenges that are thought to be key to fostering the development of the technology are proposed. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Improvement areas are highlighted, within which 10 key enabling actions are finally proposed to the wind community.
Mads H. Aa. Madsen, Frederik Zahle, Sergio González Horcas, Thanasis K. Barlas, and Niels N. Sørensen
Wind Energ. Sci., 7, 1471–1501, https://doi.org/10.5194/wes-7-1471-2022, https://doi.org/10.5194/wes-7-1471-2022, 2022
Short summary
Short summary
This work presents a shape optimization framework based on computational fluid dynamics. The design framework is used to optimize wind turbine blade tips for maximum power increase while avoiding that extra loading is incurred. The final results are shown to align well with related literature. The resulting tip shape could be mounted on already installed wind turbines as a sleeve-like solution or be conceived as part of a modular blade with tips designed for site-specific conditions.
Edward Hart, Adam Stock, George Elderfield, Robin Elliott, James Brasseur, Jonathan Keller, Yi Guo, and Wooyong Song
Wind Energ. Sci., 7, 1209–1226, https://doi.org/10.5194/wes-7-1209-2022, https://doi.org/10.5194/wes-7-1209-2022, 2022
Short summary
Short summary
We consider characteristics and drivers of loads experienced by wind turbine main bearings using simplified models of hub and main-bearing configurations. Influences of deterministic wind characteristics are investigated for 5, 7.5, and 10 MW turbine models. Load response to gusts and wind direction changes are also considered. Cubic load scaling is observed, veer is identified as an important driver of load fluctuations, and strong links between control and main-bearing load response are shown.
Cited articles
Akay, B., Ragni, D., Ferreira, C. S., and Bussel, G. J. W. V.: Experimental
investigation of the root flow in a horizontal axis wind turbine, Wind
Energy, 17, 1093–1109, https://doi.org/10.1002/we.1620, 2014. a, b
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Technical Report NREL/TP-5000-73492, NREL – National Renewable Energy Lab., Golden, CO, USA, https://doi.org/10.2172/1529216, 2019. a
Charhouni, N., Sallaou, M., and Mansouri, K.: Realistic wind farm design
layout optimization with different wind turbines types, Int. J. Energ. Environ. Eng., 10, 307–318, https://doi.org/10.1007/s40095-019-0303-2, 2019. a, b, c
Chen, Y., Li, H., He, B., Wang, P., and Jin, K.: Multi-objective genetic
algorithm based innovative wind farm layout optimization method, Energ.
Convers. Manage., 105, 1318–1327, https://doi.org/10.1016/j.enconman.2015.09.011, 2015. a
DuPont, B., Cagan, J., and Moriarty, P.: Optimization of Wind Farm Layout and
Wind Turbine Geometry Using a Multi-Level Extended Pattern Search Algorithm
That Accounts for Variation in Wind Shear Profile Shape, in: ASME 2012
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, vol. 3: 38th Design Automation
Conference, Parts A and B, 12–15 August 2012, Chicago, Illinois, USA, https://doi.org/10.1115/DETC2012-70290, 2012. a
Frohboese, P. and Schmuck, C.: Thrust coefficients used for estimation of wake effects for fatigue load calculation, in: European Wind Energy Conference and Exhibition 2010, 20–23 April 2010, Warsaw, Poland, 1–10,
http://proceedings.ewea.org/ewec2010/allfiles2/207_EWEC2010presentation.pdf
(last access: 20 July 2023), 2010. a
Gonzalez, E., Nanos, E. M., Seyr, H., Valldecabres, L., Yürüşen,
N. Y., Smolka, U., Muskulus, M., and Melero, J. J.: Key Performance
Indicators for Wind Farm Operation and Maintenance, Energ. Proced., 137,
559–570, https://doi.org/10.1016/j.egypro.2017.10.385, 2017. a
Grady, S. A., Hussaini, M. Y., and Abdullah, M. M.: Placement of wind turbines using genetic algorithms, Renew. Energy, 30, 259–270,
https://doi.org/10.1016/j.renene.2004.05.007, 2005. a
Igwemezie, V., Mehmanparast, A., and Kolios, A.: Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective, Mar.
Struct., 61, 381–397, https://doi.org/10.1016/j.marstruc.2018.06.008, 2018. a
IEA – International Energy Agency: Wind Electricity,
https://www.iea.org/reports/wind-electricity (last access: 20 July 2023), 2022. a
Karouani, Y. and Elhoussaine, Z.: Toward an intelligent traffic management
based on big data for smart city, in: Innovations in Smart Cities and
Applications, vol. 37 of SCAMS 2017, Lecture Notes in Networks and Systems, edited by: Ben Ahmed, M. and Boudhir, A., Springer, Cham, 502–514, https://doi.org/10.1007/978-3-319-74500-8_47, 2018.
a, b
Marmidis, G., Lazarou, S., and Pyrgioti, E.: Optimal placement of wind turbines in a wind park using Monte Carlo simulation, Renew. Energy, 33, 1455–1460, https://doi.org/10.1016/j.renene.2007.09.004, 2008. a
Musgrove, P.: Wind Power, in: no. 9780521762380 in Cambridge Books, Cambridge University Press,
https://ideas.repec.org/b/cup/cbooks/9780521762380.html (last access: 20 July 2023), 2009. a
Nissen, U. and Harfst, N.: Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity, Energy, 171,
1009–1016, https://doi.org/10.1016/j.energy.2019.01.093, 2019. a
Nygaard, N. G.: Wakes in very large wind farms and the effect of neighbouring
wind farms, J. Phys.: Conf. Ser., 524, 012162, https://doi.org/10.1088/1742-6596/524/1/012162, 2014. a, b
Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J. U., and Luczak, M.:
MARE-WINT: New materials and reliability in offshore wind turbine technology, Springer, Cham, https://doi.org/10.1007/978-3-319-39095-6, 2016. a, b, c
Riezebos, H. J., Hasselaar, R., Raaijmakers, T., and Vermaas, T.: Site Studies Wind Farm Zone Borssele: Morphodynamics of Borssele Wind Farm Zone, Tech. rep., Deltares,
https://english.rvo.nl/sites/default/files/2015/02/Site Studies Wind Farm Zone Borssele_Morphodynamics of Borssele Wind Farm Zone.pdf (last access: 20 July 2023), 2015. a
Sanchez Perez Moreno, S.: A guideline for selecting MDAO workflows with an
application in offshore wind energy, PhD thesis, Delft University of
Technology, https://doi.org/10.4233/uuid:ea1b4101-0e55-4abe-9539-ae5d81cf9f65, 2019.
a, b, c, d
Shafiee, M., Brennan, F., and Espinosa, I. A.: A parametric whole life cost
model for offshore wind farms, Int. J. Life Cy. Assess., 21, 961–975, https://doi.org/10.1007/s11367-016-1075-z, 2016. a
Shakoor, R., Hassan, M. Y., Raheem, A., and Rasheed, N.: Wind farm layout
optimization using area dimensions and definite point selection techniques,
Renew. Energy, 88, 154–163, https://doi.org/10.1016/j.renene.2015.11.021, 2016. a
Stanley, A. P. and Ning, A.: Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines, Wind Energ. Sci., 4,
99–114, https://doi.org/10.5194/wes-4-99-2019, 2019. a, b
Tao, J. Y. and Finenko, A.: Moving beyond LCOE: impact of various financing
methods on PV profitability for SIDS, Energy Policy, 98, 749–758,
https://doi.org/10.1016/j.enpol.2016.03.021, 2016. a
Thomsen, K. and Sørensen, P.: Fatigue loads for wind turbines operating in
wakes, J. Wind Eng. Indust. Aerodynam., 80, 121–136, https://doi.org/10.1016/S0167-6105(98)00194-9, 1999. a, b
Short summary
This paper investigates the effect of wind farm layout on the performance of offshore wind farms. A regular farm layout is compared to optimised irregular layouts. The irregular layouts have higher annual energy production, and the power production is less sensitive to wind direction. However, turbine towers require thicker walls to counteract increased fatigue due to increased turbulence levels in the farm. The study shows that layout optimisation can be used to maintain high-yield performance.
This paper investigates the effect of wind farm layout on the performance of offshore wind...
Altmetrics
Final-revised paper
Preprint