Articles | Volume 8, issue 7
https://doi.org/10.5194/wes-8-1225-2023
https://doi.org/10.5194/wes-8-1225-2023
Research article
 | 
25 Jul 2023
Research article |  | 25 Jul 2023

Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts

Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes

Related authors

Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024,https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
A listening experiment exploring the relationship between noise annoyance and sound quality metrics for airborne energy systems
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet van Gool, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-125,https://doi.org/10.5194/wes-2024-125, 2024
Preprint under review for WES
Short summary
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-87,https://doi.org/10.5194/wes-2024-87, 2024
Revised manuscript accepted for WES
Short summary
Probabilistic lifetime extension assessment using mid-term data: Lillgrund wind farm case study
Shadan Mozafari, Jennifer Rinker, Paul Veers, and Katherine Dykes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-68,https://doi.org/10.5194/wes-2024-68, 2024
Revised manuscript under review for WES
Short summary
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024,https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024,https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Identification of electro-mechanical interactions in wind turbines
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024,https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
Identification of operational deflection shapes of a wind turbine gearbox using fiber-optic strain sensors on a serial production end-of-line test bench
Unai Gutierrez Santiago, Aemilius van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-83,https://doi.org/10.5194/wes-2024-83, 2024
Revised manuscript accepted for WES
Short summary
A sensitivity-based estimation method for investigating control co-design relevance
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024,https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Validation of aeroelastic dynamic model of active trailing edge flap system tested on a 4.3 MW wind turbine
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024,https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary

Cited articles

Akay, B., Ragni, D., Ferreira, C. S., and Bussel, G. J. W. V.: Experimental investigation of the root flow in a horizontal axis wind turbine, Wind Energy, 17, 1093–1109, https://doi.org/10.1002/we.1620, 2014. a, b
Bortolotti, P., Tarres, H. C., Dykes, K. L., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind TCP Task 37: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Technical Report NREL/TP-5000-73492, NREL – National Renewable Energy Lab., Golden, CO, USA, https://doi.org/10.2172/1529216, 2019. a
Charhouni, N., Sallaou, M., and Mansouri, K.: Realistic wind farm design layout optimization with different wind turbines types, Int. J. Energ. Environ. Eng., 10, 307–318, https://doi.org/10.1007/s40095-019-0303-2, 2019. a, b, c
Chen, Y., Li, H., He, B., Wang, P., and Jin, K.: Multi-objective genetic algorithm based innovative wind farm layout optimization method, Energ. Convers. Manage., 105, 1318–1327, https://doi.org/10.1016/j.enconman.2015.09.011, 2015. a
DuPont, B., Cagan, J., and Moriarty, P.: Optimization of Wind Farm Layout and Wind Turbine Geometry Using a Multi-Level Extended Pattern Search Algorithm That Accounts for Variation in Wind Shear Profile Shape, in: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 3: 38th Design Automation Conference, Parts A and B, 12–15 August 2012, Chicago, Illinois, USA, https://doi.org/10.1115/DETC2012-70290, 2012. a
Download
Short summary
This paper investigates the effect of wind farm layout on the performance of offshore wind farms. A regular farm layout is compared to optimised irregular layouts. The irregular layouts have higher annual energy production, and the power production is less sensitive to wind direction. However, turbine towers require thicker walls to counteract increased fatigue due to increased turbulence levels in the farm. The study shows that layout optimisation can be used to maintain high-yield performance.
Altmetrics
Final-revised paper
Preprint