Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1533-2023
https://doi.org/10.5194/wes-8-1533-2023
Research article
 | 
16 Oct 2023
Research article |  | 16 Oct 2023

A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset

Serkan Kartal, Sukanta Basu, and Simon J. Watson

Related authors

Kite as a Sensor: Wind and State Estimation in Tethered Flying Systems
Oriol Cayon, Simon Watson, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-182,https://doi.org/10.5194/wes-2024-182, 2025
Preprint under review for WES
Short summary
Investigating the Relationship between Simulation Parameters and Flow Variables in Simulating Atmospheric Gravity Waves for Wind Energy Applications
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-138,https://doi.org/10.5194/wes-2024-138, 2024
Preprint under review for WES
Short summary
Dries Allaerts, 1989–2024
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024,https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Modelling Frontal Low-Level Jets and Associated Extreme Wind Power Ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-99,https://doi.org/10.5194/wes-2024-99, 2024
Revised manuscript under review for WES
Short summary
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024,https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025,https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary
The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024,https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024,https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Converging profile relationships for offshore wind speed and turbulence intensity
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024,https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary

Cited articles

Ágústsson, H. and Ólafsson, H.: Forecasting wind gusts in complex terrain, Meteorol. Atmos. Phys., 103, 173–185, 2009. a
AMS: Gust. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Gust (last access: 14 October 2023), 2023. a, b
Asadi, M. and Pourhossein, K.: Wind farm site selection considering turbulence intensity, Energy, 236, 121480, https://doi.org/10.1016/j.energy.2021.121480, 2021. a
Ashcroft, J.: The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed, J. Wind Eng. Indust. Aerodynam., 53, 331–355, 1994. a
Azorin-Molina, C., Guijarro, J.-A., McVicar, T. R., Vicente-Serrano, S. M., Chen, D., Jerez, S., and Espírito-Santo, F.: Trends of daily peak wind gusts in Spain and Portugal, 1961–2014, J. Geophys. Res.-Atmos., 121, 1059–1078, 2016. a
Download
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Altmetrics
Final-revised paper
Preprint