Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1533-2023
https://doi.org/10.5194/wes-8-1533-2023
Research article
 | 
16 Oct 2023
Research article |  | 16 Oct 2023

A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset

Serkan Kartal, Sukanta Basu, and Simon J. Watson

Related authors

Condition monitoring of wind turbine drivetrains: State-of-the-art technologies, recent trends, and future outlook
Kayacan Kestel, Xavier Chesterman, Donatella Zappalá, Simon Watson, Mingxin Li, Edward Hart, James Carroll, Yolanda Vidal, Amir R. Nejad, Shawn Sheng, Yi Guo, Matthias Stammler, Florian Wirsing, Ahmed Saleh, Nico Gregarek, Thao Baszenski, Thomas Decker, Martin Knops, Georg Jacobs, Benjamin Lehmann, Florian König, Ines Pereira, Pieter-Jan Daems, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-168,https://doi.org/10.5194/wes-2025-168, 2025
Preprint under review for WES
Short summary
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Investigating the relationship between simulation parameters and flow variables in simulating atmospheric gravity waves for wind energy applications
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci., 10, 1167–1185, https://doi.org/10.5194/wes-10-1167-2025,https://doi.org/10.5194/wes-10-1167-2025, 2025
Short summary
Simulating run-to-failure SCADA time series to enhance wind turbine fault detection and prognosis
Ali Eftekhari Milani, Donatella Zappalá, Francesco Castellani, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-62,https://doi.org/10.5194/wes-2025-62, 2025
Revised manuscript accepted for WES
Short summary
Wind turbine wake dynamics subjected to atmospheric gravity waves: A measurement-driven large-eddy simulation study
Dachuan Feng and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-52,https://doi.org/10.5194/wes-2025-52, 2025
Revised manuscript has not been submitted
Short summary

Cited articles

Ágústsson, H. and Ólafsson, H.: Forecasting wind gusts in complex terrain, Meteorol. Atmos. Phys., 103, 173–185, 2009. a
AMS: Gust. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Gust (last access: 14 October 2023), 2023. a, b
Asadi, M. and Pourhossein, K.: Wind farm site selection considering turbulence intensity, Energy, 236, 121480, https://doi.org/10.1016/j.energy.2021.121480, 2021. a
Ashcroft, J.: The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed, J. Wind Eng. Indust. Aerodynam., 53, 331–355, 1994. a
Azorin-Molina, C., Guijarro, J.-A., McVicar, T. R., Vicente-Serrano, S. M., Chen, D., Jerez, S., and Espírito-Santo, F.: Trends of daily peak wind gusts in Spain and Portugal, 1961–2014, J. Geophys. Res.-Atmos., 121, 1059–1078, 2016. a
Download
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Share
Altmetrics
Final-revised paper
Preprint