Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1533-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-1533-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset
Serkan Kartal
CORRESPONDING AUTHOR
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Sukanta Basu
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Simon J. Watson
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Oriol Cayon, Simon Watson, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-182, https://doi.org/10.5194/wes-2024-182, 2025
Preprint under review for WES
Short summary
Short summary
This study demonstrates how kites used to generate wind energy can act as sensors to measure wind conditions and system behaviour. By combining data from existing sensors, such as those measuring position, speed, and forces on the tether, a sensor fusion technique accurately estimates wind conditions and kite performance. This approach can be integrated into control systems to help optimise energy generation and enhance the reliability of these systems in changing wind conditions.
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-138, https://doi.org/10.5194/wes-2024-138, 2024
Preprint under review for WES
Short summary
Short summary
To guide realistic atmospheric gravity wave simulations, we conduct an LES study of flow over a 2D hill and through a wind farm canopy, examining optimal domain size and Rayleigh damping layer setup. Wave properties based on a Froude number determine optimal domain and damping parameters. Reasonably accurate solutions require the domain length exceed the effective horizontal wavelength, height and damping thickness equal a vertical wavelength, and normalized-damping coefficient between 1–10.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-99, https://doi.org/10.5194/wes-2024-99, 2024
Revised manuscript under review for WES
Short summary
Short summary
Our study explores how frontal low-level jets (FLLJs) impact wind power production by causing ramp-down events. Using the Weather Research and Forecasting model, we analyzed various modeling configurations and found that initial and boundary conditions, domain configuration, and wind farm parameterization significantly influence simulations. Our findings show such extreme events can be forecasted one day in advance, helping manage wind power more efficiently for a stable, reliable energy supply.
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024, https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Short summary
This research presents a multi-objective optimisation approach to balance vertical-axis wind turbine (VAWT) performance and noise, comparing the combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking controller with a baseline. Psychoacoustic annoyance is used as a novel metric for human perception of wind turbine noise. Results showcase the WSE–TSR tracking controller’s potential in trading off the considered objectives, thereby fostering the deployment of VAWTs in urban areas.
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Sarah J. Ollier and Simon J. Watson
Wind Energ. Sci., 8, 1179–1200, https://doi.org/10.5194/wes-8-1179-2023, https://doi.org/10.5194/wes-8-1179-2023, 2023
Short summary
Short summary
This modelling study shows that topographic trapped lee waves (TLWs) modify flow behaviour and power output in offshore wind farms. We demonstrate that TLWs can substantially alter the wind speeds at individual wind turbines and effect the power output of the turbine and whole wind farm. The impact on wind speeds and power is dependent on which part of the TLW wave cycle interacts with the wind turbines and wind farm. Positive and negative impacts of TLWs on power output are observed.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022, https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Short summary
This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the energy conversion systems transferring the kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps.
Bedassa R. Cheneka, Simon J. Watson, and Sukanta Basu
Wind Energ. Sci., 5, 1731–1741, https://doi.org/10.5194/wes-5-1731-2020, https://doi.org/10.5194/wes-5-1731-2020, 2020
Short summary
Short summary
Wind power ramps have important characteristics for the planning and integration of wind power production into electricity. We present a new and simple algorithm that detects wind power ramp characteristics. The algorithm classifies wind power production into ramp-ups, ramp-downs, and no-ramps; and it can detect wind power ramp characteristics that show a temporal increasing (decreasing) power capacity.
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020, https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Short summary
We have presented a methodology for including multiple wind profile shapes in a wind resource description that are identified using a data-driven approach. These shapes go beyond the height range for which conventional wind profile relationships are developed. Moreover, they include non-monotonic shapes such as low-level jets. We demonstrated this methodology for an on- and offshore reference location using DOWA data and efficiently estimated the annual energy production of a pumping AWE system.
Patrick Hawbecker, Sukanta Basu, and Lance Manuel
Wind Energ. Sci., 3, 203–219, https://doi.org/10.5194/wes-3-203-2018, https://doi.org/10.5194/wes-3-203-2018, 2018
Cian J. Desmond, Simon J. Watson, Christiane Montavon, and Jimmy Murphy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2017-34, https://doi.org/10.5194/wes-2017-34, 2017
Revised manuscript not accepted
Short summary
Short summary
The flow over densely forested terrain under neutral and non-neutral conditions is considered using commercially available Computational Fluid Dynamics software. Results are validated against data from a site in North-Eastern France. It is shown that the effects of both neutral and stable atmospheric stratifications can be modelled numerically using state of the art methodologies whilst unstable stratifications remain elusive.
Related subject area
Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
On the lidar-turbulence paradox and possible countermeasures
The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Understanding the impact of data gaps on long-term offshore wind resource estimates
Converging profile relationships for offshore wind speed and turbulence intensity
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Experimental evaluation of wind turbine wake turbulence impacts on a general aviation aircraft
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods
Flow acceleration statistics: a new paradigm for wind-driven loads, towards probabilistic turbine design
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Offshore wind farms modify low-level jets
Periods of constant wind speed: How long do they last in the turbulent atmospheric boundary layer?
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Renewable Energy Complementarity (RECom) maps – a comprehensive visualisation tool to support spatial diversification
Control-oriented modelling of wind direction variability
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Observations of wind farm wake recovery at an operating wind farm
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Measurement-driven large-eddy simulations of a diurnal cycle during a wake-steering field campaign
The fractal turbulent–non-turbulent interface in the atmosphere
TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Characterization of Local Wind Profiles: A Random Forest Approach for Enhanced Wind Profile Extrapolation
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
The wind farm pressure field
Realistic turbulent inflow conditions for estimating the performance of a floating wind turbine
Brief communication: On the definition of the low-level jet
Revealing inflow and wake conditions of a 6 MW floating turbine
Stochastic gradient descent for wind farm optimization
Modelling the impact of trapped lee waves on offshore wind farm power output
Applying a random time mapping to Mann-modeled turbulence for the generation of intermittent wind fields
From shear to veer: theory, statistics, and practical application
Quantification and correction of motion influence for nacelle-based lidar systems on floating wind turbines
Gaussian mixture models for the optimal sparse sampling of offshore wind resource
Dependence of turbulence estimations on nacelle lidar scanning strategies
Vertical extrapolation of Advanced Scatterometer (ASCAT) ocean surface winds using machine-learning techniques
An investigation of spatial wind direction variability and its consideration in engineering models
From gigawatt to multi-gigawatt wind farms: wake effects, energy budgets and inertial gravity waves investigated by large-eddy simulations
Investigations of correlation and coherence in turbulence from a large-eddy simulation
Validation of turbulence intensity as simulated by the Weather Research and Forecasting model off the US northeast coast
On the laminar–turbulent transition mechanism on megawatt wind turbine blades operating in atmospheric flow
Brief communication: A momentum-conserving superposition method applied to the super-Gaussian wind turbine wake model
Turbulence structures and entrainment length scales in large offshore wind farms
Effect of different source terms and inflow direction in atmospheric boundary modeling over the complex terrain site of Perdigão
Comparison of large eddy simulations against measurements from the Lillgrund offshore wind farm
Adjusted spectral correction method for calculating extreme winds in tropical-cyclone-affected water areas
The Jensen wind farm parameterization
Current and future wind energy resources in the North Sea according to CMIP6
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025, https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary
Short summary
Lidars are vastly used in wind energy, but most users struggle when interpreting lidar turbulence measures. Here, we explain the difficulty in converting them into standard measurements. We show two ways of converting lidar to in situ turbulence measurements, both using neural networks: one of them is based on physics, while the other is purely data-driven. They show promising results when compared to high-quality turbulence measurements from a tall mast.
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024, https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
Short summary
This study presents the actuator farm model, a new method for modeling wind turbines within large wind farms. The model greatly reduces computational cost when compared to traditional actuator wind turbine models and is beneficial for studying flow around large wind farms as well as the interaction between multiple wind farms. Results obtained from numerical simulations show excellent agreement with past wind turbine models, demonstrating its utility for future large-scale wind farm simulations.
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024, https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024, https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
Short summary
An extensive set of met mast data offshore northwestern Europe are used to reduce uncertainty in offshore wind speed and turbulence intensity. The performance of widely used industry standard relationships is quantified, while some new empirical relationships are derived for practical application. Motivations include encouraging appropriate convergence of traditionally separate technical disciplines within the rapidly growing offshore wind energy industry.
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024, https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Short summary
Wind turbines are increasing in size and operate more frequently above the atmospheric surface layer, which requires improved inflow models for numerical simulations of turbine interaction. In this work, a novel steady-state model of the atmospheric boundary layer (ABL) is introduced. Numerical wind turbine flow simulations subjected to shallow and tall ABLs are conducted, and the proposed model shows improved performance compared to other state-of-the-art steady-state models.
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024, https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary
Short summary
Measurements of wind turbine wakes with scanning lidar instruments contain complex errors. We model lidars in a simulated environment to understand how and why the measured wake may differ from the true wake and validate the results with observational data. The lidar smooths out the wake, making it seem more spread out and the slowdown of the winds less pronounced. Our findings provide insights into best practices for accurately measuring wakes with lidar and interpreting observational data.
Jonathan D. Rogers
Wind Energ. Sci., 9, 1849–1868, https://doi.org/10.5194/wes-9-1849-2024, https://doi.org/10.5194/wes-9-1849-2024, 2024
Short summary
Short summary
This paper describes the results of a flight experiment to assess the existence of potential safety risks to a general aviation aircraft from added turbulence in the wake of a wind turbine. A general aviation aircraft was flown through the wake of an operating wind turbine at different downwind distances. Results indicated that there were small increases in disturbances to the aircraft due to added turbulence in the wake, but they never approached levels that would pose a safety risk.
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024, https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Short summary
ERA5 has become the workhorse of most wind resource assessment applications, as it compares better with in situ measurements than other reanalyses. However, for design purposes, ERA5 suffers from a drawback: it underestimates strong wind speeds offshore (approx. from 10 m s−1). This is not widely discussed in the scientific literature. We address this bias and proposes a simple, robust correction. This article supports the growing need for use-case-specific validations of reanalysis datasets.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Mostafa Bakhoday Paskyabi
Wind Energ. Sci., 9, 1631–1645, https://doi.org/10.5194/wes-9-1631-2024, https://doi.org/10.5194/wes-9-1631-2024, 2024
Short summary
Short summary
The exchange of momentum and energy between the atmosphere and ocean depends on air–sea processes, especially wave-related ones. Precision in representing these interactions is vital for offshore wind turbine and farm design and operation. The development of a reliable wave–turbulence decomposition method to remove wave-induced interference from single-height wind measurements is essential for these applications and enhances our grasp of wind coherence within the wave boundary layer.
Mark Kelly
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-69, https://doi.org/10.5194/wes-2024-69, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Industrial standards for wind turbine design are based on 10-minute statistics of wind speed at turbine hub-height, treating fluctuations as turbulence. But recent work shows the effect of strong transients is described by flow accelerations. We devise a method to measure the accelerations turbines encounter; the extremes offshore defy 10-minute statistics, due to various phenomena beyond turbulence. These findings are translated into a recipe supporting statistical turbine design.
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024, https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Short summary
Extrapolating the wind profile for complex terrain through the long short-term memory model outperformed the traditional power law methodology, which due to its universal nature cannot capture local features as the machine-learning methodology does. Moreover, considering the importance of investigating the wind potential and the need for alternative energy sources, it is motivating to find that a short observational campaign can produce better results than the traditional techniques.
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-48, https://doi.org/10.5194/wes-2024-48, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Offshore wind farms will be built along the east coast of the United States. Low-level jets (LLJs) – layers of fast winds at low altitudes – also occur here. LLJs provide wind resources and also influence moisture and pollution transport, so it is important to understand how they might change. We develop and validate an automated tool to detect LLJs, and compare one year of simulations with and without wind farms. Here, we describe LLJ characteristics and how they change with wind farms.
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-32, https://doi.org/10.5194/wes-2024-32, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Considerably large and unexpected load events are measured on operating wind turbines, but they are not predicted by numerical simulations. As a possible explanation, we define, measure, and characterize the statistics of periods of constant wind speed. Additional comparisons to synthetic and pure turbulent data suggest that such events are not intrinsic to small-scale turbulence and are not accurately described by current standard models of the wind.
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024, https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Short summary
Experiments offer incredible value to science, but results must come with an uncertainty quantification to be meaningful. We present a method to simulate a proposed experiment, calculate uncertainties, and determine the measurement duration (total time of measurements) and the experiment duration (total time to collect the required measurement data when including condition variability and time when measurement is not occurring) required to produce statistically significant and converged results.
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024, https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Short summary
This study compares the results of two wind farm parameterizations (WFPs) in the Weather Research and Forecasting model, simulating a two-turbine array under three atmospheric stabilities with large-eddy simulations. We show that the WFPs accurately depict wind speeds either near turbines or in the far-wake areas, but not both. The parameterizations’ performance varies by variable (wind speed or turbulent kinetic energy) and atmospheric stability, with reduced accuracy in stable conditions.
Til Kristian Vrana and Harald G. Svendsen
Wind Energ. Sci., 9, 919–932, https://doi.org/10.5194/wes-9-919-2024, https://doi.org/10.5194/wes-9-919-2024, 2024
Short summary
Short summary
We developed new ways to plot comprehensive wind resource maps that show the revenue potential of different locations for future wind power developments. The relative capacity factor is introduced as an indicator showing the expected mean power output. The market value factor is introduced, which captures the expected mean market value relative to other wind parks. The Renewable Energy Complementarity (RECom) index combines the two into a single index, resulting in the RECom map.
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024, https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary
Short summary
This review presents the current understanding of wind direction variability in the context of control-oriented modelling of wind turbines and wind farms in a manner suitable to a wide audience. Motivation comes from the significant and commonly seen yaw error of horizontal axis wind turbines, which carries substantial negative impacts on annual energy production and the levellised cost of wind energy. Gaps in the literature are identified, and the critical challenges in this area are discussed.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Raghavendra Krishnamurthy, Rob Newsom, Colleen Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna M. Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-29, https://doi.org/10.5194/wes-2024-29, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The growth of wind farms in the central United States in the last decade has been staggering. This study looked at how wind farms affect the recovery of wind wakes – the disturbed air behind wind turbines. In places like the US Great Plains, phenomena such as low-level jets can form, changing how wind farms work. We studied how wind wakes recover under different weather conditions using real-world data, which is important for making wind energy more efficient and reliable.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
Eliot Quon
Wind Energ. Sci., 9, 495–518, https://doi.org/10.5194/wes-9-495-2024, https://doi.org/10.5194/wes-9-495-2024, 2024
Short summary
Short summary
Engineering models used to design wind farms generally do not account for realistic atmospheric conditions that can rapidly evolve from minute to minute. This paper uses a first-principles simulation technique to predict the performance of five wind turbines during a wind farm control experiment. Challenges included limited observations and atypical conditions. The simulation accurately predicts the aerodynamics of a turbine when it is situated partially within the wake of an upstream turbine.
Lars Neuhaus, Matthias Wächter, and Joachim Peinke
Wind Energ. Sci., 9, 439–452, https://doi.org/10.5194/wes-9-439-2024, https://doi.org/10.5194/wes-9-439-2024, 2024
Short summary
Short summary
Future wind turbines reach unprecedented heights and are affected by wind conditions that have not yet been studied in detail. With increasing height, a transition to laminar conditions with a turbulent–non-turbulent interface (TNTI) becomes more likely. In this paper, the presence and fractality of this TNTI in the atmosphere are studied. Typical fractalities known from ideal laboratory and numerical studies and a frequent occurrence of the TNTI at heights of multi-megawatt turbines are found.
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320, https://doi.org/10.5194/wes-9-297-2024, https://doi.org/10.5194/wes-9-297-2024, 2024
Short summary
Short summary
In the current study, we introduce TOSCA (Toolbox fOr Stratified Convective Atmospheres), an open-source computational fluid dynamics (CFD) tool, and demonstrate its capabilities by simulating the flow around a large wind farm, operating in realistic flow conditions. This is one of the grand challenges of the present decade and can yield better insight into physical phenomena that strongly affect wind farm operation but which are not yet fully understood.
Farkhondeh Rouholahnejad and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-178, https://doi.org/10.5194/wes-2023-178, 2024
Revised manuscript accepted for WES
Short summary
Short summary
In wind energy, precise wind speed prediction at hub-height is vital. Our study in the Dutch North Sea reveals that the on-site trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms corrected ERA5 in capturing wind speed variations and fine wind patterns, highlighting its potential for offshore wind resource assessment.
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024, https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Short summary
Using lidar-derived wind speed measurements at approx. 150 m height at onshore and offshore locations, we quantify the advantages of deploying wind turbines offshore in terms of the amount of electrical power produced and the higher reliability and predictability of the electrical power.
Ronald B. Smith
Wind Energ. Sci., 9, 253–261, https://doi.org/10.5194/wes-9-253-2024, https://doi.org/10.5194/wes-9-253-2024, 2024
Short summary
Short summary
Recent papers have investigated the impact of turbine drag on local wind patterns, but these studies have not given a full explanation of the induced pressure field. The pressure field blocks and deflects the wind and in other ways modifies farm efficiency. Current gravity wave models are complex and provide no estimation tools. We dig deeper into the cause of the pressure field and provide approximate closed-form expressions for pressure field effects.
Cédric Raibaudo, Jean-Christophe Gilloteaux, and Laurent Perret
Wind Energ. Sci., 8, 1711–1725, https://doi.org/10.5194/wes-8-1711-2023, https://doi.org/10.5194/wes-8-1711-2023, 2023
Short summary
Short summary
The work presented here proposes interfacing experimental measurements performed in a wind tunnel with simulations conducted with the aeroelastic code FAST and applied to a floating wind turbine model under wave-induced motion. FAST simulations using experiments match well with those obtained using the inflow generation method provided by TurbSim. The highest surge motion frequencies show a significant decrease in the mean power produced by the turbine and a mitigation of the flow dynamics.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Short summary
This study presents the first experimental investigation using two nacelle-mounted wind lidars that reveal the upwind and downwind conditions relative to a full-scale floating wind turbine. We find that in the case of floating wind turbines with small pitch and roll oscillating motions (< 1°), the ambient turbulence is the main driving factor that determines the propagation of the wake characteristics.
Julian Quick, Pierre-Elouan Rethore, Mads Mølgaard Pedersen, Rafael Valotta Rodrigues, and Mikkel Friis-Møller
Wind Energ. Sci., 8, 1235–1250, https://doi.org/10.5194/wes-8-1235-2023, https://doi.org/10.5194/wes-8-1235-2023, 2023
Short summary
Short summary
Wind turbine positions are often optimized to avoid wake losses. These losses depend on atmospheric conditions, such as the wind speed and direction. The typical optimization scheme involves discretizing the atmospheric inputs, then considering every possible set of these discretized inputs in every optimization iteration. This work presents stochastic gradient descent (SGD) as an alternative, which randomly samples the atmospheric conditions during every optimization iteration.
Sarah J. Ollier and Simon J. Watson
Wind Energ. Sci., 8, 1179–1200, https://doi.org/10.5194/wes-8-1179-2023, https://doi.org/10.5194/wes-8-1179-2023, 2023
Short summary
Short summary
This modelling study shows that topographic trapped lee waves (TLWs) modify flow behaviour and power output in offshore wind farms. We demonstrate that TLWs can substantially alter the wind speeds at individual wind turbines and effect the power output of the turbine and whole wind farm. The impact on wind speeds and power is dependent on which part of the TLW wave cycle interacts with the wind turbines and wind farm. Positive and negative impacts of TLWs on power output are observed.
Khaled Yassin, Arne Helms, Daniela Moreno, Hassan Kassem, Leo Höning, and Laura J. Lukassen
Wind Energ. Sci., 8, 1133–1152, https://doi.org/10.5194/wes-8-1133-2023, https://doi.org/10.5194/wes-8-1133-2023, 2023
Short summary
Short summary
The current turbulent wind field models stated in the IEC 61400-1 standard underestimate the probability of extreme changes in wind velocity. This underestimation can lead to the false calculation of extreme and fatigue loads on the turbine. In this work, we are trying to apply a random time-mapping technique to one of the standard turbulence models to adapt to such extreme changes. The turbulent fields generated are compared with a standard wind field to show the effects of this new mapping.
Mark Kelly and Maarten Paul van der Laan
Wind Energ. Sci., 8, 975–998, https://doi.org/10.5194/wes-8-975-2023, https://doi.org/10.5194/wes-8-975-2023, 2023
Short summary
Short summary
The turning of the wind with height, which is known as veer, can affect wind turbine performance. Thus far meteorology has only given idealized descriptions of veer, which has not yet been related in a way readily usable for wind energy. Here we derive equations for veer in terms of meteorological quantities and provide practically usable forms in terms of measurable shear (change in wind speed with height). Flow simulations and measurements at turbine heights support these developments.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot
Wind Energ. Sci., 8, 771–786, https://doi.org/10.5194/wes-8-771-2023, https://doi.org/10.5194/wes-8-771-2023, 2023
Short summary
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023, https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Short summary
Nacelle lidars with different beam scanning locations and two types of systems are considered for inflow turbulence estimations using both numerical simulations and field measurements. The turbulence estimates from a sonic anemometer at the hub height of a Vestas V52 turbine are used as references. The turbulence parameters are retrieved using the radial variances and a least-squares procedure. The findings from numerical simulations have been verified by the analysis of the field measurements.
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Oliver Maas
Wind Energ. Sci., 8, 535–556, https://doi.org/10.5194/wes-8-535-2023, https://doi.org/10.5194/wes-8-535-2023, 2023
Short summary
Short summary
The study compares small vs. large wind farms regarding the flow and power output with a turbulence-resolving simulation model. It shows that a large wind farm (90 km length) significantly affects the wind direction and that the wind speed is higher in the large wind farm wake. Both wind farms excite atmospheric gravity waves that also affect the power output of the wind farms.
Regis Thedin, Eliot Quon, Matthew Churchfield, and Paul Veers
Wind Energ. Sci., 8, 487–502, https://doi.org/10.5194/wes-8-487-2023, https://doi.org/10.5194/wes-8-487-2023, 2023
Short summary
Short summary
We investigate coherence and correlation and highlight their importance for disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend on turbulence structure. We compare coherence estimates to those computed using a model suggested by international standards. We show the differences and highlight additional information that can be gained using large-eddy simulation, further improving analytical coherence models used in synthetic turbulence generators.
Sheng-Lun Tai, Larry K. Berg, Raghavendra Krishnamurthy, Rob Newsom, and Anthony Kirincich
Wind Energ. Sci., 8, 433–448, https://doi.org/10.5194/wes-8-433-2023, https://doi.org/10.5194/wes-8-433-2023, 2023
Short summary
Short summary
Turbulence intensity is critical for wind turbine design and operation as it affects wind power generation efficiency. Turbulence measurements in the marine environment are limited. We use a model to derive turbulence intensity and test how sea surface temperature data may impact the simulated turbulence intensity and atmospheric stability. The model slightly underestimates turbulence, and improved sea surface temperature data reduce the bias. Error with unrealistic mesoscale flow is identified.
Brandon Arthur Lobo, Özge Sinem Özçakmak, Helge Aagaard Madsen, Alois Peter Schaffarczyk, Michael Breuer, and Niels N. Sørensen
Wind Energ. Sci., 8, 303–326, https://doi.org/10.5194/wes-8-303-2023, https://doi.org/10.5194/wes-8-303-2023, 2023
Short summary
Short summary
Results from the DAN-AERO and aerodynamic glove projects provide significant findings. The effects of inflow turbulence on transition and wind turbine blades are compared to computational fluid dynamic simulations. It is found that the transition scenario changes even over a single revolution. The importance of a suitable choice of amplification factor is evident from the simulations. An agreement between the power spectral density plots from the experiment and large-eddy simulations is seen.
Frédéric Blondel
Wind Energ. Sci., 8, 141–147, https://doi.org/10.5194/wes-8-141-2023, https://doi.org/10.5194/wes-8-141-2023, 2023
Short summary
Short summary
Accurate wind farm flow predictions based on analytical wake models are crucial for wind farm design and layout optimization. Wake superposition methods play a key role and remain a substantial source of uncertainty. In the present work, a momentum-conserving superposition method is extended to the superposition of super-Gaussian-type velocity deficit models, allowing the full wake velocity deficit estimation and design of closely packed wind farms.
Abdul Haseeb Syed, Jakob Mann, Andreas Platis, and Jens Bange
Wind Energ. Sci., 8, 125–139, https://doi.org/10.5194/wes-8-125-2023, https://doi.org/10.5194/wes-8-125-2023, 2023
Short summary
Short summary
Wind turbines extract energy from the incoming wind flow, which needs to be recovered. In very large offshore wind farms, the energy is recovered mostly from above the wind farm in a process called entrainment. In this study, we analyzed the effect of atmospheric stability on the entrainment process in large offshore wind farms using measurements recorded by a research aircraft. This is the first time that in situ measurements are used to study the energy recovery process above wind farms.
Kartik Venkatraman, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Teigen Giljarhus
Wind Energ. Sci., 8, 85–108, https://doi.org/10.5194/wes-8-85-2023, https://doi.org/10.5194/wes-8-85-2023, 2023
Short summary
Short summary
This paper is focused on the impact of modeling different effects, such as forest canopy and Coriolis forces, on the wind resource over a complex terrain site located near Perdigão, Portugal. A numerical model is set up and results are compared with field measurements. The results show that including a forest canopy improves the predictions close to the ground at some locations on the site, while the model with inflow from a precursor performed better at other locations.
Ishaan Sood, Elliot Simon, Athanasios Vitsas, Bart Blockmans, Gunner C. Larsen, and Johan Meyers
Wind Energ. Sci., 7, 2469–2489, https://doi.org/10.5194/wes-7-2469-2022, https://doi.org/10.5194/wes-7-2469-2022, 2022
Short summary
Short summary
In this work, we conduct a validation study to compare a numerical solver against measurements obtained from the offshore Lillgrund wind farm. By reusing a previously developed inflow turbulent dataset, the atmospheric conditions at the wind farm were recreated, and the general performance trends of the turbines were captured well. The work increases the reliability of numerical wind farm solvers while highlighting the challenges of accurately representing large wind farms using such solvers.
Xiaoli Guo Larsén and Søren Ott
Wind Energ. Sci., 7, 2457–2468, https://doi.org/10.5194/wes-7-2457-2022, https://doi.org/10.5194/wes-7-2457-2022, 2022
Short summary
Short summary
A method is developed for calculating the extreme wind in tropical-cyclone-affected water areas. The method is based on the spectral correction method that fills in the missing wind variability to the modeled time series, guided by best track data. The paper provides a detailed recipe for applying the method and the 50-year winds of equivalent 10 min temporal resolution from 10 to 150 m in several tropical-cyclone-affected regions.
Yulong Ma, Cristina L. Archer, and Ahmadreza Vasel-Be-Hagh
Wind Energ. Sci., 7, 2407–2431, https://doi.org/10.5194/wes-7-2407-2022, https://doi.org/10.5194/wes-7-2407-2022, 2022
Short summary
Short summary
Wind turbine wakes are important because they reduce the power production of wind farms and may cause unintended impacts on the weather around wind farms. Weather prediction models, like WRF and MPAS, are often used to predict both power and impacts of wind farms, but they lack an accurate treatment of wind farm wakes. We developed the Jensen wind farm parameterization, based on the existing Jensen model of an idealized wake. The Jensen parameterization is accurate and computationally efficient.
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci., 7, 2373–2391, https://doi.org/10.5194/wes-7-2373-2022, https://doi.org/10.5194/wes-7-2373-2022, 2022
Short summary
Short summary
We explore the changes in wind energy resources in northern Europe using output from simulations from the Climate Model Intercomparison Project (CMIP6) under the high-emission scenario. Our results show that climate change does not particularly alter annual energy production in the North Sea but could affect the seasonal distribution of these resources, significantly reducing energy production during the summer from 2031 to 2050.
Cited articles
Ágústsson, H. and Ólafsson, H.: Forecasting wind gusts in complex terrain, Meteorol. Atmos. Phys., 103, 173–185, 2009. a
Asadi, M. and Pourhossein, K.: Wind farm site selection considering turbulence intensity, Energy, 236, 121480, https://doi.org/10.1016/j.energy.2021.121480, 2021. a
Ashcroft, J.: The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed, J. Wind Eng. Indust. Aerodynam., 53, 331–355, 1994. a
Azorin-Molina, C., Guijarro, J.-A., McVicar, T. R., Vicente-Serrano, S. M., Chen, D., Jerez, S., and Espírito-Santo, F.: Trends of daily peak wind gusts in Spain and Portugal, 1961–2014, J. Geophys. Res.-Atmos., 121, 1059–1078, 2016. a
Basu, S., He, P., and DeMarco, A. W.: Parametrizing the energy dissipation rate in stably stratified flows, Bound.-Lay. Meteorol., 178, 167–184, 2021. a
Beljaars, A. C. M.: The influence of sampling and filtering on measured wind gusts, J. Atmos. Ocean. Tech., 4, 613–626, 1987. a
Boutle, I. A., Eyre, J. E. J., and Lock, A. P.: Seamless stratocumulus simulation across the turbulent gray zone, Mon. Weather Rev., 142, 1655–1668, 2014. FLAML optimizes hyperparameters usin a
Brasseur, O.: Development and application of a physical approach to estimating wind gusts, Mon. Weather Rev., 129, 5–25, 2001. a
Brázdil, R., Hostỳnek, J., Řezníčková, L., Zahradníček, P., Tolasz, R., Dobrovolnỳ, P., and Štěpánek, P.: The variability of maximum wind gusts in the Czech Republic between 1961 and 2014, Int. J. Climatol., 37, 1961–1978, 2017. a
Brook, R. R. and Spillane, K. T.: The effect of averaging time and sample duration on estimation and measurement of maximum wind gusts, J. Appl. Meteorol., 9, 567–574, 1968. a
Brook, R. R. and Spillane, K. T.: On the variation of maximum wind gusts with height, J. Appl. Meteorol. Clim., 9, 72–78, 1970. a
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site, Renew. Sustain. Energ. Rev., 27, 362–400, 2013. a
CDS: Welcome to the Climate Data Store, https://cds.climate.copernicus.eu (last access: 14 October 2023), 2023. a
Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, in: Proceedings of the 22nd ACM Sig KDD International Conference on Knowledge Discovery and Data Mining, 13–17 August 2016, San Francisco, California, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. a
Choi, E. C. C. and Hidayat, F. A.: Gust factors for thunderstorm and non-thunderstorm winds, J. Wind Eng. Indust. Aerodynam., 90, 1683–1696, 2002. a
Deacon, E. L.: Gust variation with height up to 150 m, Q. J. Roy. Meteorol. Soc., 81, 562–573, 1955. a
Dimitrov, N., Natarajan, A., and Mann, J.: Effects of normal and extreme turbulence spectral parameters on wind turbine loads, Renew. Energy, 101, 1180–1193, 2017. a
Ebrahimi, A. and Sekandari, M.: Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes, Energy, 145, 261–275, 2018. a
ECMWF: IFS Documentation – Cy47r1, Operational Implementation, Part IV: Physical Processes, Tech. rep., European Centre for Medium-Range Weather Forecasts, Reading, UK, https://www.ecmwf.int/en/publications/ifs-documentation (last access: 14 October 2023), 2020. a
Enloe, J., O'Brien, J. J., and Smith, S. R.: ENSO impacts on peak wind gusts in the United States, J. Climate, 17, 1728–1737, 2004. a
Fovell, R. G. and Cao, Y.: The Santa Ana winds of Southern California: winds, gusts, and the 2007 Witch fire, Wind Struct., 24, 529–564, 2017. a
Freund, Y. and Schapire, R.: A short introduction to boosting, J. Jpn. Soc. Artific. Intel., 14, 771–780, 1999. a
Friedman, J. H.: Stochastic gradient boosting, Comput. Stat. Data Ana., 38, 367–378, 2002. a
Fujita, T. T.: The Downburst, The University of Chicago, http://hdl.handle.net/10605/262010 (last access: 14 October 2023), 1985. a
Geurts, P., Ernst, D., and Wehenkel, L.: Extremely Randomized Trees, Mach. Learn., 63, 3–42, 2006. a
Goyette, S., Brasseur, O., and Beniston, M.: Application of a new wind gust parameterization: Multiscale case studies performed with the Canadian regional climate model, J. Geophys. Res.-Atmos., 108, 4374, https://doi.org/10.1029/2002JD002646, 2003. a
Gualtieri, G.: Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review, Renew. Sustain. Energ. Rev., 167, 112741, https://doi.org/10.1016/j.rser.2022.112741, 2022. a
Hansen, K. S. and Larsen, G. C.: Characterising turbulence intensity for fatigue load analysis of wind turbines, Wind Eng., 29, 319–329, 2005. a
Hastie, T., Tibshirani, R., and Friedman, J. H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, in: 2nd Edn., Springer, https://doi.org/10.1007/978-0-387-84858-7, 2009. a
Hawbecker, P., Basu, S., and Manuel, L.: Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm, Wind Energy, 20, 1803–1822, 2017. a
Hedevang, E.: Wind turbine power curves incorporating turbulence intensity, Wind Energy, 17, 173–195, 2014. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020. a
Holmes, J. D.: Wind Loading of Structures, Taylor & Francis, https://doi.org/10.1201/b18029, 2001. a, b
Hu, W., Letson, F., Barthelmie, R. J., and Pryor, S. C.: Wind gust characterization at wind turbine relevant heights in moderately complex terrain, J. Appl. Meteorol. Clim., 57, 1459–1476, 2018. a
IEC: IEC 61400-1, Ed. 4, Wind Turbine Generator Systems, Part 1 – Safety Requirements, Tech. rep., International Electrotechnical Commission, Geneva, https://webstore.iec.ch/publication/26423 (last access: 14 October 2023), 2019. a
Ishihara, T., Yamaguchi, A., Takahara, K., Mekaru, T., and Matsuura, S.: An analysis of damaged wind turbines by typhoon Maemi in 2003, in: Proc. of the Sixth Asia-Pacific Conference on Wind Engineering, 12–14 September 2005, Seoul, Korea, 1413–1428, ISBN 9788989693154, 2005. a
Kartal, S.: Peak Wind Gust Estimation, GitHub [code], https://github.com/serkankartal/PeakWindGustEstimation (last access: 14 October 2023), 2023. a
Kelley, N. D., Osgood, R. M., Bialasiewicz, J. T., and Jakubowski, A.: Using wavelet analysis to assess turbulence/rotor interactions, Wind Energy, 3, 121–134, 2000. a
Kohonen, T.: The self-organizing map, Proc. IEEE, 78, 1464–1480, 1990. a
Kohonen, T.: Essentials of the self-organizing map, Neural Networks, 37, 52–65, 2013. a
Kurbatova, M., Rubinstein, K., Gubenko, I., and Kurbatov, G.: Comparison of seven wind gust parameterizations over the European part of Russia, Adv. Sci. Res., 15, 251–255, https://doi.org/10.5194/asr-15-251-2018, 2018. a, b
Lee, J. C. Y., Stuart, P., Clifton, A., Fields, M. J., Perr-Sauer, J., Williams, L., Cameron, L., Geer, T., and Housley, P.: The Power Curve Working Group's assessment of wind turbine power performance prediction methods, Wind Energ. Sci., 5, 199–223, https://doi.org/10.5194/wes-5-199-2020, 2020. a
Lombardo, F. T.: History of the peak three-second gust, J. Wind Eng. Indust. Aerodynam., 208, 104447, https://doi.org/10.1016/j.jweia.2020.104447, 2021. a
Lombardo, F. T. and Zickar, A. S.: Characteristics of measured extreme thunderstorm near-surface wind gusts in the United States, J. Wind Eng. Indust. Aerodynam., 193, 103961, https://doi.org/10.1016/j.jweia.2019.103961, 2019. a
Lombardo, F. T., Smith, D. A., Schroeder, J. L., and Mehta, K. C.: Thunderstorm characteristics of importance to wind engineering, J. Wind Eng. Indust. Aerodynam., 125, 121–132, 2014. a
Machado, M. R., Karray, S., and de Sousa, I. T.: LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry, in: IEEE 14th International Conference on Computer Science & Education (ICCSE), 19–21 August 2019, Toronto, ON, Canada, 1111–1116, https://doi.org/10.1109/ICCSE.2019.8845529, 2019. a
MESONET: West Texas Mesonet, https://www.mesonet.ttu.edu/ (last access: 14 October 2023), 2023. a
Milan, P., Wächter, M., and Peinke, J.: Turbulent character of wind energy, Phys. Rev. Lett., 110, 138701, https://doi.org/10.1103/PhysRevLett.110.138701, 2013. a
Murphy, K. P.: Probabilistic Machine Learning: An Introduction, MIT Press, ISBN 9780262046824, 2022. a
NOAA: Gust. Glossary of Meteorology, https://forecast.weather.gov/glossary.php?word=wind gust (last access: 14 October 2023), 2023. a
Olauson, J.: ERA5: The new champion of wind power modelling?, Renew. Energy, 126, 322–331, 2018. a
Panofsky, H. A. and Dutton, J. A.: Atmospheric Turbulence, John Wiley & Sons, ISBN 9780471057147, 1984. a
Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., and Frank, H. P.: Wind power meteorology. Part I: Climate and turbulence, Wind Energy, 1, 25–45, 1998. a
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas-Reyes, F. J.: What global reanalysis best represents near-surface winds?, Q. J. Roy. Meteorol. Soc., 145, 3236–3251, 2019. a
Ren, G., Liu, J., Wan, J., Li, F., Guo, Y., and Yu, D.: The analysis of turbulence intensity based on wind speed data in onshore wind farms, Renew. Energy, 123, 756–766, 2018. a
Rogers, A. L., Rogers, J. W., and Manwell, J. F.: Comparison of the performance of four measure–correlate–predict algorithms, J. Wind Eng. Indust. Aerodynam., 93, 243–264, 2005. a
Rohatgi, J. S. and Nelson, V.: Wind Characteristics: An analysis for the generation of wind power, Alternative Energy Institute, West Texas A&M University, ISBN 9780808714781, 1994. a
Rokach, L. and Maimon, O.: Data Mining with Decision Trees: Theory and Applications, World Scientific Publishing Co. Pvt. Ltd., ISBN 978-9814590082, 2008. a
Sallis, P. J., Claster, W., and Hernández, S.: A machine-learning algorithm for wind gust prediction, Comput. Geosci., 37, 1337–1344, 2011. a
Shin, H. H. and Hong, S.-Y.: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions, Mon. Weather Rev., 143, 250–271, 2015. a
Shu, Z. R., Chan, P. W., Li, Q. S., He, Y. C., Yan, B. W., Li, L., Lu, C., Zhang, L., and Yang, H. L.: Assessing wind gust characteristics at wind turbine relevant height, J. Renew. Sustain. Energ., 13, 063308, https://doi.org/10.1063/5.0053077, 2021. a
Siddiqui, M. S., Rasheed, A., Kvamsdal, T., and Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine, Energ. Proced., 80, 312–320, 2015. a
Solari, G.: Wind Science and Engineering: Origins, developments, fundamentals and advancements, Springer, https://doi.org/10.1007/978-3-030-18815-3, 2019. a
Spassiani, A. C. and Mason, M. S.: Application of Self-organizing Maps to classify the meteorological origin of wind gusts in Australia, J. Wind Eng. Indust. Aerodynam., 210, 104529, https://doi.org/10.1016/j.jweia.2021.104529, 2021. a, b
Spiliotis, E.: Decision Trees for Time-Series Forecasting, Foresight, 64, 30–44, 2022. a
St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck, S. J.: Wind turbine power production and annual energy production depend on atmospheric stability and turbulence, Wind Energ. Sci., 1, 221–236, https://doi.org/10.5194/wes-1-221-2016, 2016. a
Stucki, P., Dierer, S., Welker, C., Gómez-Navarro, J. J., Raible, C. C., Martius, O., and Brönnimann, S.: Evaluation of downscaled wind speeds and parameterised gusts for recent and historical windstorms in Switzerland, Tellus A, 68, 31820, https://doi.org/10.3402/tellusa.v68.31820, 2016. a, b, c, d
Sumner, J. and Masson, C.: Influence of atmospheric stability on wind turbine power performance curves, J. Sol. Energ. Eng., 128, 531–538, 2006. a
Suomi, I., Vihma, T., Gryning, S.-E., and Fortelius, C.: Wind-gust parametrizations at heights relevant for wind energy: A study based on mast observations, Q. J. Roy. Meteorol. Soc., 139, 1298–1310, 2013. a
Suomi, I., Gryning, S.-E., Floors, R., Vihma, T., and Fortelius, C.: On the vertical structure of wind gusts, Q. J. Roy. Meteorol. Soc., 141, 1658–1670, 2015. a
Wade, C.: Hands-on Gradient Boosting with XGBoost and scikit-learn, Packt Publishing Ltd., ISBN 9781839218354, 2020. a
Wang, C., Wu, Q., Weimer, M., and Zhu, E.: FLAML: A fast and lightweight automl library, Proc. Mach. Learn. Syst., 3, 434–447, 2021. a
Wang, H., Zhang, Y.-M., Mao, J.-X., and Wan, H.-P.: A probabilistic approach for short-term prediction of wind gust speed using ensemble learning, J. Wind Eng. Indust. Aerodynam., 202, 104198, https://doi.org/10.1016/j.jweia.2020.104198, 2020. a, b
Wang, H., Zhang, Y.-M., and Mao, J.-X.: Sparse Gaussian process regression for multi-step ahead forecasting of wind gusts combining numerical weather predictions and on-site measurements, J. Wind Eng. Indust. Aerodynam., 220, 104873, https://doi.org/10.1016/j.jweia.2021.104873, 2022. a, b
Weggel, J. R.: Maximum daily wind gusts related to mean daily wind speed, J. Struct. Eng., 125, 465–468, 1999. a
Wharton, S. and Lundquist, J. K.: Atmospheric stability affects wind turbine power collection, Environ. Res. Lett., 7, 014005, https://doi.org/10.1088/1748-9326/7/1/014005, 2012. a
Wieringa, J.: Gust factors over open water and built-up country, Bound.-Lay. Meteorol., 3, 424–441, 1973. a
Wu, Q., Wang, C., and Huang, S.: Frugal optimization for cost-related hyperparameters, Proc. AAAI Conf. Artific. Intel., 35, 10347–10354, 2021. a
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Peak wind gust is a crucial meteorological variable for wind farm planning and operations....
Altmetrics
Final-revised paper
Preprint