Articles | Volume 8, issue 10
https://doi.org/10.5194/wes-8-1533-2023
https://doi.org/10.5194/wes-8-1533-2023
Research article
 | 
16 Oct 2023
Research article |  | 16 Oct 2023

A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset

Serkan Kartal, Sukanta Basu, and Simon J. Watson

Related authors

Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Investigating the relationship between simulation parameters and flow variables in simulating atmospheric gravity waves for wind energy applications
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci., 10, 1167–1185, https://doi.org/10.5194/wes-10-1167-2025,https://doi.org/10.5194/wes-10-1167-2025, 2025
Short summary
Simulating run-to-failure SCADA time series to enhance wind turbine fault detection and prognosis
Ali Eftekhari Milani, Donatella Zappalá, Francesco Castellani, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-62,https://doi.org/10.5194/wes-2025-62, 2025
Revised manuscript under review for WES
Short summary
Wind turbine wake dynamics subjected to atmospheric gravity waves: A measurement-driven large-eddy simulation study
Dachuan Feng and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-52,https://doi.org/10.5194/wes-2025-52, 2025
Preprint under review for WES
Short summary
Impact of atmospheric turbulence on performance and loads of wind turbines: Knowledge gaps and research challenges
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42,https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Performance of wind assessment datasets in United States coastal areas
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, Ethan Young, and Rao Kotamarthi
Wind Energ. Sci., 10, 1551–1574, https://doi.org/10.5194/wes-10-1551-2025,https://doi.org/10.5194/wes-10-1551-2025, 2025
Short summary
Simulated meteorological impacts of offshore wind turbines and sensitivity to the amount of added turbulence kinetic energy
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025,https://doi.org/10.5194/wes-10-1269-2025, 2025
Short summary
Evaluating mesoscale model predictions of diurnal speedup events in the Altamont Pass Wind Resource Area of California
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025,https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Swell impacts on an offshore wind farm in stable boundary layer: wake flow and energy budget analysis
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci., 10, 1101–1122, https://doi.org/10.5194/wes-10-1101-2025,https://doi.org/10.5194/wes-10-1101-2025, 2025
Short summary
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025,https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary

Cited articles

Ágústsson, H. and Ólafsson, H.: Forecasting wind gusts in complex terrain, Meteorol. Atmos. Phys., 103, 173–185, 2009. a
AMS: Gust. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Gust (last access: 14 October 2023), 2023. a, b
Asadi, M. and Pourhossein, K.: Wind farm site selection considering turbulence intensity, Energy, 236, 121480, https://doi.org/10.1016/j.energy.2021.121480, 2021. a
Ashcroft, J.: The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed, J. Wind Eng. Indust. Aerodynam., 53, 331–355, 1994. a
Azorin-Molina, C., Guijarro, J.-A., McVicar, T. R., Vicente-Serrano, S. M., Chen, D., Jerez, S., and Espírito-Santo, F.: Trends of daily peak wind gusts in Spain and Portugal, 1961–2014, J. Geophys. Res.-Atmos., 121, 1059–1078, 2016. a
Download
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Share
Altmetrics
Final-revised paper
Preprint