Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-771-2023
https://doi.org/10.5194/wes-8-771-2023
Research article
 | 
17 May 2023
Research article |  | 17 May 2023

Gaussian mixture models for the optimal sparse sampling of offshore wind resource

Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot

Related authors

Arctic regional changes revealed by clustering of sea-ice observations
Amélie Simon, Pierre Tandeo, Florian Sévellec, and Camille Lique
EGUsphere, https://doi.org/10.5194/egusphere-2025-704,https://doi.org/10.5194/egusphere-2025-704, 2025
Short summary
Could old tide gauges help estimate past atmospheric variability?
Paul Platzer, Pierre Ailliot, Bertrand Chapron, and Pierre Tandeo
Clim. Past, 20, 2267–2286, https://doi.org/10.5194/cp-20-2267-2024,https://doi.org/10.5194/cp-20-2267-2024, 2024
Short summary
Enhancing turbulent fluctuation measurement with tailored wind lidar profilers
Maxime Thiébaut, Frédéric Delbos, Cristina Benzo, Loïc Mahe, and Florent Guinot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-93,https://doi.org/10.5194/wes-2024-93, 2024
Revised manuscript accepted for WES
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Experimental evaluation of the motion-induced effects on turbulent fluctuations measurement on floating lidar systems
Nicolas Thebault, Maxime Thiébaut, Marc Le Boulluec, Guillaume Damblans, Christophe Maisondieu, Cristina Benzo, and Florent Guinot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-126,https://doi.org/10.5194/wes-2023-126, 2023
Preprint withdrawn
Short summary

Cited articles

Ali, N., Calaf, M., and Cal, R. B.: Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes, J. Renew. Sustain. Ener., 13, 023307, https://doi.org/10.1063/5.0036281, 2021. a
Annoni, J., Taylor, T., Bay, C., Johnson, K., Pao, L., Fleming, P., and Dykes, K.: Sparse-sensor placement for wind farm control, J. Phys.-Conf. Ser., 1037, 032019, https://doi.org/10.1088/1742-6596/1037/3/032019, 2018. a, b
Brunton, B. W., Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Sparse Sensor Placement Optimization for Classification, SIAM J. Appl. Math., 76, 2099–2122, https://doi.org/10.1137/15M1036713, 2016. a
Castillo, A. and Messina, A. R.: Data-driven sensor placement for state reconstruction via POD analysis, IET Generation, Transmission & Distribution, 14, 656–664, 2019. a
CEREMA: Eoliennes en mer en France, https://www.eoliennesenmer.fr/ (last access: May 2023), 2022. a
Download
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Share
Altmetrics
Final-revised paper
Preprint