Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-771-2023
https://doi.org/10.5194/wes-8-771-2023
Research article
 | 
17 May 2023
Research article |  | 17 May 2023

Gaussian mixture models for the optimal sparse sampling of offshore wind resource

Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot

Related authors

Could old tide gauges help estimate past atmospheric variability?
Paul Platzer, Pierre Ailliot, Bertrand Chapron, and Pierre Tandeo
Clim. Past, 20, 2267–2286, https://doi.org/10.5194/cp-20-2267-2024,https://doi.org/10.5194/cp-20-2267-2024, 2024
Short summary
Enhancing turbulent fluctuation measurement with tailored wind lidar profilers
Maxime Thiébaut, Frédéric Delbos, Cristina Benzo, Loïc Mahe, and Florent Guinot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-93,https://doi.org/10.5194/wes-2024-93, 2024
Preprint under review for WES
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Experimental evaluation of the motion-induced effects on turbulent fluctuations measurement on floating lidar systems
Nicolas Thebault, Maxime Thiébaut, Marc Le Boulluec, Guillaume Damblans, Christophe Maisondieu, Cristina Benzo, and Florent Guinot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-126,https://doi.org/10.5194/wes-2023-126, 2023
Preprint withdrawn
Short summary
Data-driven reconstruction of partially observed dynamical systems
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137, https://doi.org/10.5194/npg-30-129-2023,https://doi.org/10.5194/npg-30-129-2023, 2023
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Converging profile relationships for offshore wind speed and turbulence intensity
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024,https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024,https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary
Experimental evaluation of wind turbine wake turbulence impacts on a general aviation aircraft
Jonathan D. Rogers
Wind Energ. Sci., 9, 1849–1868, https://doi.org/10.5194/wes-9-1849-2024,https://doi.org/10.5194/wes-9-1849-2024, 2024
Short summary
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary

Cited articles

Ali, N., Calaf, M., and Cal, R. B.: Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes, J. Renew. Sustain. Ener., 13, 023307, https://doi.org/10.1063/5.0036281, 2021. a
Annoni, J., Taylor, T., Bay, C., Johnson, K., Pao, L., Fleming, P., and Dykes, K.: Sparse-sensor placement for wind farm control, J. Phys.-Conf. Ser., 1037, 032019, https://doi.org/10.1088/1742-6596/1037/3/032019, 2018. a, b
Brunton, B. W., Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Sparse Sensor Placement Optimization for Classification, SIAM J. Appl. Math., 76, 2099–2122, https://doi.org/10.1137/15M1036713, 2016. a
Castillo, A. and Messina, A. R.: Data-driven sensor placement for state reconstruction via POD analysis, IET Generation, Transmission & Distribution, 14, 656–664, 2019. a
CEREMA: Eoliennes en mer en France, https://www.eoliennesenmer.fr/ (last access: May 2023), 2022. a
Download
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Altmetrics
Final-revised paper
Preprint