Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1631-2024
https://doi.org/10.5194/wes-9-1631-2024
Research article
 | 
02 Aug 2024
Research article |  | 02 Aug 2024

Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods

Mostafa Bakhoday Paskyabi

Related authors

Implementation of a Simple Actuator Disk for Large-Eddy Simulation in the Weather Research and Forecasting Model (WRF-SADLES v1.2) for wind turbine wake simulation
Hai Bui, Mostafa Bakhoday-Paskyabi, and Mohammadreza Mohammadpour-Penchah
Geosci. Model Dev., 17, 4447–4465, https://doi.org/10.5194/gmd-17-4447-2024,https://doi.org/10.5194/gmd-17-4447-2024, 2024
Short summary
Swell Impacts on an Offshore Wind Farm in Stable Boundary Layer: Wake Flow and Energy Budget Analysis
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-38,https://doi.org/10.5194/wes-2024-38, 2024
Preprint under review for WES
Short summary
Gaussian wake model fitting in a transient event over Alpha Ventus wind farm
Maria Krutova and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-79,https://doi.org/10.5194/wes-2023-79, 2023
Revised manuscript has not been submitted
Short summary
Self-nested large-eddy simulations in PALM model system v21.10 for offshore wind prediction under different atmospheric stability conditions
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Geosci. Model Dev., 16, 3553–3564, https://doi.org/10.5194/gmd-16-3553-2023,https://doi.org/10.5194/gmd-16-3553-2023, 2023
Short summary
Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022,https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024,https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024,https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Experimental Evaluation of Wind Turbine Wake Turbulence Impacts on a General Aviation Aircraft
Jonathan Rogers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-51,https://doi.org/10.5194/wes-2024-51, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Ayet, A. and Chapron, B.: The Dynamical Coupling of Wind-Waves and Atmospheric Turbulence: A Review of Theoretical and Phenomenological Models, Bound.-Lay. Meteorol., 183, 1–33, https://doi.org/10.1007/s10546-021-00666-6, 2022. a
Bakhoday-Paskyabi, M.: A wavelet-entropy based segmentation of turbulence measurements from a moored shear probe near the wavy sea surface, SN Applied Sciences, 2, 102, https://doi.org/10.1007/s42452-019-1751-2, 2019. a, b, c
Bakhoday Paskyabi, M.: Mean wind and stability time series at FINO1 between June and July 2015 (from OBLEX-F1), Zenodo [data set], https://doi.org/10.5281/zenodo.7422388, 2022. 
Bakhoday Paskyabi, M.: High frequency wind recored from sonic anemometers: Impact of swell waves on atmospheric surface turbulence, Zenodo [data set], https://doi.org/10.5281/zenodo.7591198, 2023. 
Bakhoday-Paskyabi, M., Fer, I., and Reuder, J.: Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs, Ocean Dynam., 68, 109–130, 2018. a
Download
Short summary
The exchange of momentum and energy between the atmosphere and ocean depends on air–sea processes, especially wave-related ones. Precision in representing these interactions is vital for offshore wind turbine and farm design and operation. The development of a reliable wave–turbulence decomposition method to remove wave-induced interference from single-height wind measurements is essential for these applications and enhances our grasp of wind coherence within the wave boundary layer.
Altmetrics
Final-revised paper
Preprint