Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2175-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-2175-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
University of Stuttgart, Stuttgart Wind Energy (SWE), Allmandring 5b, 70569 Stuttgart, Germany
Vasilis Pettas
University of Stuttgart, Stuttgart Wind Energy (SWE), Allmandring 5b, 70569 Stuttgart, Germany
Nikolay Dimitrov
DTU Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, Roskilde 4000, Denmark
Po Wen Cheng
University of Stuttgart, Stuttgart Wind Energy (SWE), Allmandring 5b, 70569 Stuttgart, Germany
Related authors
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024, https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
Short summary
As climate change increasingly impacts our daily lives, a transition towards cleaner energy is needed. With all the growth in floating offshore wind and the planned floating wind farms (FWFs) in the next few years, we urgently need new techniques and methodologies to accommodate the differences between the fixed bottom and FWFs. This paper presents a novel methodology to decrease aerodynamic losses inside an FWF by passively relocating the downwind floating wind turbines out of the wakes.
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024, https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
Short summary
Large direct-drive wind turbines, with a multi-megawatt power rating, face design challenges. Moving towards a more system-oriented design approach could potentially reduce mass and costs. Exploiting the full design space, though, may invoke interaction mechanisms, which have been neglected in the past. Based on coupled simulations, this work derives a better understanding of the electro-mechanical interaction mechanisms and identifies potential for design relevance.
Qi Pan, Dexing Liu, Feng Guo, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-44, https://doi.org/10.5194/wes-2024-44, 2024
Revised manuscript under review for WES
Short summary
Short summary
The floating wind market is striving to scale up from a handful of prototypes to gigawatt-scale capacity, despite facing barriers of high costs in the deep-sea deployment. Shared mooring is promising in reducing material costs. This paper introduces a comprehensive design methodology for reliable shared mooring line configurations, and reveals their potential for cost-saving and power enhancement. These findings contribute to achieving cost-effective solutions for floating wind farms.
Wei Yu, Sheng Tao Zhou, Frank Lemmer, and Po Wen Cheng
Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024, https://doi.org/10.5194/wes-9-1053-2024, 2024
Short summary
Short summary
Integrating a tuned liquid multi-column damping (TLMCD) into a floating offshore wind turbine (FOWT) is challenging. The synergy between the TLMCD, the turbine controller, and substructure dynamics affects the FOWT's performance and cost. A control co-design optimization framework is developed to optimize the substructure, the TLMCD, and the blade pitch controller simultaneously. The results show that the optimization can significantly enhance FOWT system performance.
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024, https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary
Short summary
Understanding the underlying physical phenomena of the aerodynamics of floating offshore wind turbines (FOWTs) is crucial for successful simulations. No consensus has been reached in the research community on which unsteady aerodynamic phenomena are relevant and how much they can influence the loads acting on a FOWT. This work contributes to the understanding and characterisation of such unsteady phenomena using a novel experimental approach and comprehensive numerical investigations.
Xiaodong Zhang and Nikolay Dimitrov
Wind Energ. Sci., 8, 1613–1623, https://doi.org/10.5194/wes-8-1613-2023, https://doi.org/10.5194/wes-8-1613-2023, 2023
Short summary
Short summary
Wind turbine extreme response estimation based on statistical extrapolation necessitates using a small number of simulations to calculate a low exceedance probability. This is a challenging task especially if we require small prediction error. We propose the use of a Gaussian mixture model as it is capable of estimating a low exceedance probability with minor bias error, even with limited simulation data, having flexibility in modeling the distributions of varying response variables.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 8, 149–171, https://doi.org/10.5194/wes-8-149-2023, https://doi.org/10.5194/wes-8-149-2023, 2023
Short summary
Short summary
The benefits of lidar-assisted control are evaluated using both the Mann model and Kaimal model-based 4D turbulence, considering the variation of turbulence parameters. Simulations are performed for the above-rated mean wind speed, using the NREL 5.0 MW reference wind turbine and a four-beam lidar system. Using lidar-assisted control reduces the variations in rotor speed, pitch rate, tower base fore–aft bending moment, and electrical power significantly.
Konstanze Kölle, Tuhfe Göçmen, Irene Eguinoa, Leonardo Andrés Alcayaga Román, Maria Aparicio-Sanchez, Ju Feng, Johan Meyers, Vasilis Pettas, and Ishaan Sood
Wind Energ. Sci., 7, 2181–2200, https://doi.org/10.5194/wes-7-2181-2022, https://doi.org/10.5194/wes-7-2181-2022, 2022
Short summary
Short summary
The paper studies wind farm flow control (WFFC) in simulations with variable electricity prices. The results indicate that considering the electricity price in the operational strategy can be beneficial with respect to the gained income compared to focusing on the power gain only. Moreover, revenue maximization by balancing power production and structural load reduction is demonstrated at the example of a single wind turbine.
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022, https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Short summary
Lidar-assisted control of wind turbines requires a wind field generator capable of simulating wind evolution. Out of this need, we extend the Veers method for 3D wind field generation to 4D and propose a two-step Cholesky decomposition approach. Based on this, we develop a 4D wind field generator – evoTurb – coupled with TurbSim and Mann turbulence generator. We further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide practical suggestions.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng
Wind Energ. Sci., 6, 1247–1262, https://doi.org/10.5194/wes-6-1247-2021, https://doi.org/10.5194/wes-6-1247-2021, 2021
Short summary
Short summary
We perform a validation of the new simulation tool FAST.Farm for the prediction of power output and structural loads in single wake conditions with respect to measurement data from the offshore wind farm alpha ventus. With a new wake-added turbulence functionality added to FAST.Farm, good agreement between simulations and measurements is achieved for the considered quantities. We hereby give insights into load characteristics of an offshore wind turbine subjected to single wake conditions.
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021, https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Short summary
We carry out a probabilistic calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution nacelle-based lidar measurements of the wake flow field. The experimental data were collected from the Scaled Wind Farm Technology (SWiFT) facility in Texas. The analysis includes the velocity deficit, wake-added turbulence, and wake meandering features under various inflow wind and atmospheric-stability conditions.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Inga Reinwardt, Levin Schilling, Dirk Steudel, Nikolay Dimitrov, Peter Dalhoff, and Michael Breuer
Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, https://doi.org/10.5194/wes-6-441-2021, 2021
Short summary
Short summary
This analysis validates the DWM model based on loads and power production measured at an onshore wind farm. Special focus is given to the performance of a version of the DWM model that was previously recalibrated with a lidar system at the site. The results of the recalibrated wake model agree very well with the measurements. Furthermore, lidar measurements of the wind speed deficit and the wake meandering are incorporated in the DWM model definition in order to decrease the uncertainties.
Yiyin Chen, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 6, 61–91, https://doi.org/10.5194/wes-6-61-2021, https://doi.org/10.5194/wes-6-61-2021, 2021
Short summary
Short summary
Wind evolution is currently of high interest, mainly due to the development of lidar-assisted wind turbine control (LAC). Moreover, 4D stochastic wind field simulations can be made possible by integrating wind evolution into 3D simulations to provide a more realistic simulation environment for LAC. Motivated by these factors, we investigate the potential of Gaussian process regression in the parameterization of a two-parameter wind evolution model using data of two nacelle-mounted lidars.
Davide Conti, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 5, 1129–1154, https://doi.org/10.5194/wes-5-1129-2020, https://doi.org/10.5194/wes-5-1129-2020, 2020
Short summary
Short summary
We propose a method for carrying out wind turbine load validation in wake conditions using measurements from forward-looking nacelle lidars. The uncertainty of aeroelastic load predictions is quantified against wind turbine on-board sensor data. This work demonstrates the applicability of nacelle-mounted lidar measurements to extend load and power validations under wake conditions and highlights the main challenges.
Laura Schröder, Nikolay Krasimirov Dimitrov, and David Robert Verelst
Wind Energ. Sci., 5, 1007–1022, https://doi.org/10.5194/wes-5-1007-2020, https://doi.org/10.5194/wes-5-1007-2020, 2020
Short summary
Short summary
We suggest a methodology for correlating loads with component reliability of turbines in wind farms by combining physical modeling with machine learning. The suggested approach is demonstrated on an offshore wind farm for comparing performance, loads and lifetime estimations against recorded main bearing failures from maintenance reports. It is found that turbines positioned at the border of the wind farm with a higher expected AEP are estimated to experience earlier main bearing failures.
Martin Hofsäß, Dominique Bergmann, Jan Denzel, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-81, https://doi.org/10.5194/wes-2019-81, 2019
Revised manuscript not accepted
Short summary
Short summary
We needed a way to measure wind vectors and turbulence in complex, hard-to-access terrain. We equipped a model helicopter with a standard 3-D ultrasonic anemometer. Due to the hovering capabilities, stationary point measurements are possible. The first measurements were made in flat terrain. A 100 m high stationary wind measuring mast served as reference. The results were investigated in the time domain as well as in the frequency domain.
Steffen Raach, Bart Doekemeijer, Sjoerd Boersma, Jan-Willem van Wingerden, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-54, https://doi.org/10.5194/wes-2019-54, 2019
Publication in WES not foreseen
Short summary
Short summary
The presented work combines two control approaches of wake redirection control, feedforward wake redirection and feedback wake redirction. In our previous investigatins the lidar-assisted feedback control was studied and the advantages and disadvantages were discussed. The optimal yaw angles for the wind turbines are precomputed, the feedback takes care of uncertainties and disturbances. The concept is demonstrated in a high fidelity simulation model.
Ásta Hannesdóttir, Mark Kelly, and Nikolay Dimitrov
Wind Energ. Sci., 4, 325–342, https://doi.org/10.5194/wes-4-325-2019, https://doi.org/10.5194/wes-4-325-2019, 2019
Short summary
Short summary
We investigate large wind speed fluctuations from a 10-year period at the Danish coastal site Høvsøre. The most extreme fluctuations are not turbulent but due to larger-scale weather phenomena. We find how these fluctuations impact wind turbines using simulations. The results are then compared to an extreme turbulence model described in the wind turbine safety standards, and it is found that the loads on the different turbine components are not the same as what the standard describes.
Nikolay Dimitrov, Mark C. Kelly, Andrea Vignaroli, and Jacob Berg
Wind Energ. Sci., 3, 767–790, https://doi.org/10.5194/wes-3-767-2018, https://doi.org/10.5194/wes-3-767-2018, 2018
Short summary
Short summary
Wind energy site suitability assessment procedures often require estimating the loads a wind turbine will be subject to when installed. The estimation is often time-consuming and requires several iterations. We have developed a procedure for quick and accurate estimation of site-specific wind turbine loads. Our approach employs computationally efficient parametric models that are calibrated to high-fidelity load simulations. The result is a significant reduction in computation efforts.
Kolja Müller and Po Wen Cheng
Wind Energ. Sci., 3, 149–162, https://doi.org/10.5194/wes-3-149-2018, https://doi.org/10.5194/wes-3-149-2018, 2018
Short summary
Short summary
An efficient and accurate Monte Carlo approach is presented to assess the lifetime fatigue loading on a floating offshore wind turbine accurately. This is typically challenging in simulation effort due to the many different combinations of relevant environmental conditions which need to be considered. The applied method uses quasi-random Sobol sequences and shows promising performance with respect to convergence and accuracy.
Steffen Raach, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 2, 257–267, https://doi.org/10.5194/wes-2-257-2017, https://doi.org/10.5194/wes-2-257-2017, 2017
Short summary
Short summary
This work provides a possible solution to closed-loop flow control in a wind farm.
The remote sensing technology, lidar, which is a laser-based measurement system, is used to obtain wind speed information behind a wind turbine. The measurements are processed using a model-based approach to estimate position information of the wake. The information is then used in a controller to redirect the wake to the desired position. Altogether, the concept aims to increase the power output of a wind farm.
Alfredo Peña, Jakob Mann, and Nikolay Dimitrov
Wind Energ. Sci., 2, 133–152, https://doi.org/10.5194/wes-2-133-2017, https://doi.org/10.5194/wes-2-133-2017, 2017
Short summary
Short summary
Nacelle lidars are nowadays extensively used to scan the turbine inflow. Thus, it is important to characterize turbulence from their measurements. We present two methods to perform turbulence estimation and demonstrate them using two types of lidars. With one method we can estimate the along-wind unfiltered variance accurately. With the other we can estimate the filtered radial velocity variance accurately and velocity-tensor parameters under neutral and high wind-speed conditions.
Related subject area
Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
Unsupervised anomaly detection of permanent-magnet offshore wind generators through electrical and electromagnetic measurements
Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
On the Uncertainty of Digital Twin Models for Load Monitoring and Fatigue Assessment in Wind Turbine Drivetrains
Active trailing edge flap system fault detection via machine learning
Grand challenges in the digitalisation of wind energy
Overview of normal behavior modeling approaches for SCADA-based wind turbine condition monitoring demonstrated on data from operational wind farms
Assessing the rotor blade deformation and tower–blade tip clearance of a 3.4 MW wind turbine with terrestrial laser scanning
Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations
Population Based Structural Health Monitoring: Homogeneous Offshore Wind Model Development
Wind turbine main-bearing lubrication – Part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 MW wind turbine
Reduction of wind-turbine-generated seismic noise with structural measures
Very low frequency IEPE accelerometer calibration and application to a wind energy structure
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci., 9, 2063–2086, https://doi.org/10.5194/wes-9-2063-2024, https://doi.org/10.5194/wes-9-2063-2024, 2024
Short summary
Short summary
This study emphasizes the need for effective condition monitoring in permanent magnet offshore wind generators to tackle issues like demagnetization and eccentricity. Utilizing a machine learning model and high-resolution measurements, we explore methods of early fault detection. Our findings indicate that flux monitoring with affordable, easy-to-install stray flux sensors with frequency information offers a promising fault detection strategy for large megawatt-scale offshore wind generators.
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024, https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
Short summary
We explore the effect of blade modifications on offshore wind turbines' performance through a detailed analysis of 12 turbines over 12 years. Introducing the turbine performance integral method, which utilises time-series decomposition that combines various data sources, we uncover how blade wear, repairs and software updates impact efficiency. The findings offer valuable insights into improving wind turbine operations, contributing to the enhancement of renewable energy technologies.
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024, https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary
Short summary
We collate the latest reliability data in operations and maintenance (O&M) for offshore wind turbines, specifically large turbines of 15 MW. We use these data to model O&M of an offshore wind farm at three different sites. We compare two industry-dominant drivetrain configurations in terms of O&M cost for 15 MW turbines and determine if previous results for smaller turbines still hold true. Comparisons between drivetrains are topical within industry, and we produce cost comparisons for them.
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024, https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Short summary
Turbulence is one of the main drivers of fatigue in wind turbines. There is some debate on how to model the turbulence in normal wind conditions in the design phase. To address such debates, we study the fatigue load distribution and reliability following different models of the International Electrotechnical Commission 61400-1 standard. The results show the lesser importance of load uncertainty due to turbulence distribution compared to the uncertainty of material resistance and Miner’s rule.
Felix Christian Mehlan and Amir R. Nejad
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-28, https://doi.org/10.5194/wes-2024-28, 2024
Revised manuscript under review for WES
Short summary
Short summary
A Digital Twin is a virtual representation that mirrors the wind turbine's real behavior through simulation models and sensor measurements and can assist in making key decisions such as planning the replacement of parts. These models and measurements are, of course, not perfect and only give an incomplete picture of the real behavior. This study investigates how large the uncertainty of such models and measurements is and to what extent it affects the decision-making process.
Andrea Gamberini and Imad Abdallah
Wind Energ. Sci., 9, 181–201, https://doi.org/10.5194/wes-9-181-2024, https://doi.org/10.5194/wes-9-181-2024, 2024
Short summary
Short summary
Active trailing edge flaps can potentially reduce wind turbine (WT) loads. To monitor their performance, we present two methods based on machine learning that identify flap health states, including degraded performance, in normal power production and idling condition. Both methods rely only on sensors commonly available on WTs. One approach properly detects all the flap states if a fault occurs on only one blade. The other approach can identify two specific flap states in all fault scenarios.
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci., 8, 947–974, https://doi.org/10.5194/wes-8-947-2023, https://doi.org/10.5194/wes-8-947-2023, 2023
Short summary
Short summary
Wind energy creates huge amounts of data, which can be used to improve plant design, raise efficiency, reduce operating costs, and ease integration. These all contribute to cheaper and more predictable energy from wind. But realising the value of data requires a digital transformation that brings
grand challengesaround data, culture, and coopetition. This paper describes how the wind energy industry could work with R&D organisations, funding agencies, and others to overcome them.
Xavier Chesterman, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 8, 893–924, https://doi.org/10.5194/wes-8-893-2023, https://doi.org/10.5194/wes-8-893-2023, 2023
Short summary
Short summary
This paper reviews and implements several techniques that can be used for condition monitoring and failure prediction for wind turbines using SCADA data. The focus lies on techniques that respond to requirements of the industry, e.g., robustness, transparency, computational efficiency, and maintainability. The end result of this research is a pipeline that can accurately detect three types of failures, i.e., generator bearing failures, generator fan failures, and generator stator failures.
Paula Helming, Alex Intemann, Klaus-Peter Webersinke, Axel von Freyberg, Michael Sorg, and Andreas Fischer
Wind Energ. Sci., 8, 421–431, https://doi.org/10.5194/wes-8-421-2023, https://doi.org/10.5194/wes-8-421-2023, 2023
Short summary
Short summary
Using renewable energy such as wind energy is vital. To optimize the energy yield from wind turbines, they have increased in size, leading to large blade deformations. This paper measures these deformations for different wind loads and the distance between the blade and the tower from 170 m away from the wind turbine. The paper proves that the blade deformation increases in the wind direction with increasing wind speed, while the distance between the blade and the tower decreases.
Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen
Wind Energ. Sci., 8, 173–191, https://doi.org/10.5194/wes-8-173-2023, https://doi.org/10.5194/wes-8-173-2023, 2023
Short summary
Short summary
This paper presents a data-driven framework for modeling erosion damage based on real blade inspections and mesoscale weather data. The outcome of the framework is a machine-learning-based model that can predict and/or forecast leading-edge erosion damage based on weather data and user-specified wind turbine characteristics. The model output fits directly into the damage terminology used by the industry and can therefore support site-specific maintenance planning and scheduling of repairs.
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93, https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
Short summary
Population based structural health monitoring is a low-cost monitoring campaign. The cost reduction from this type of digital enabled asset management tool is manifested by sharing information, in this case a wind farm foundation, within the population. By sharing the information in the wind farm this reduces the amount of sensors and physical model updating, reducing the cost of the monitoring campaign.
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1533–1550, https://doi.org/10.5194/wes-7-1533-2022, https://doi.org/10.5194/wes-7-1533-2022, 2022
Short summary
Short summary
This paper is the second in a two-part study on lubrication in wind turbine main bearings. Investigations are conducted concerning lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. This includes effects relating to temperature, starvation, grease-thickener interactions and possible non-steady EHL effects. Results predict that the modelled main bearing would be expected to operate under mixed lubrication conditions for a non-negligible proportion of its life.
Rafael Abreu, Daniel Peter, and Christine Thomas
Wind Energ. Sci., 7, 1227–1239, https://doi.org/10.5194/wes-7-1227-2022, https://doi.org/10.5194/wes-7-1227-2022, 2022
Short summary
Short summary
In order to find consensus between wind energy producers and seismologists, we study the possibility of reducing wind turbine noise recorded at seismological stations. We find that drilling half-circular holes in front of the wind turbines helps to reduce the seismic noise. We also study the influence of topographic effects on seismic noise reduction.
Clemens Jonscher, Benedikt Hofmeister, Tanja Grießmann, and Raimund Rolfes
Wind Energ. Sci., 7, 1053–1067, https://doi.org/10.5194/wes-7-1053-2022, https://doi.org/10.5194/wes-7-1053-2022, 2022
Short summary
Short summary
This work presents a method to use low-noise IEPE sensors in the low-frequency range down to 0.05 Hz. In order to achieve phase and amplitude accuracy with this type of sensor in the low-frequency range, a new calibration procedure for this frequency range was developed. The calibration enables the use of the low-noise IEPE sensors for large structures, such as wind turbines. The calibrated sensors can be used for wind turbine monitoring, such as fatigue monitoring.
Cited articles
Allen, C., Anthony, V., Habib, D., Andrew, G., Evan, G., Nikhar, A., Matthew, H., and Garrett, B.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Report, National Renewable Energy Laboratory, https://www.nrel.gov/docs/fy20osti/76773.pdf (last access: 29 October 2024), 2020. a, b
Azzam, B., Schelenz, R., Roscher, B., Baseer, A., and Jacobs, G.: Development of a wind turbine gearbox virtual load sensor using multibody simulation and artificial neural networks, Forsch. Ingenieurwes., 85, 241–250, https://doi.org/10.1007/s10010-021-00460-3, 2021. a
Benasciutti, D. and Tovo, R.: Spectral methods for lifetime prediction under wide-band stationary random processes, Int. J. Fatigue, 27, 867–877, https://doi.org/10.1016/j.ijfatigue.2004.10.007, 2005. a
Blum, C. and Dambeck, J.: Analytical Assessment of the Propagation of Colored Sensor Noise in Strapdown Inertial Navigation, Sensors, 20, 6914, https://doi.org/10.3390/s20236914, 2020. a
Borg, M., Collu, M., and Kolios, A.: Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics, Renew. Sust. Energ. Rev., 39, 1226–1234, https://doi.org/10.1016/j.rser.2014.07.122, 2014. a
Conti, D., Pettas, V., Dimitrov, N., and Peña, A.: Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals, Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, 2021. a
de N Santos, F., D’Antuono, P., Robbelein, K., Noppe, N., Weijtjens, W., and Devriendt, C.: Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks, Renew. Energ., 205, 461–474, https://doi.org/10.1016/j.renene.2023.01.093, 2023. a
Dimitrov, N. and Göçmen, T.: Virtual sensors for wind turbines with machine learning-based time series models, Wind Energy, 25, 1626–1645, https://doi.org/10.1002/we.2762, 2022. a, b
Dimitrov, N., Borraccino, A., Peña, A., Natarajan, A., and Mann, J.: Wind turbine load validation using lidar-based wind retrievals, Wind Energy, 22, 1512–1533, https://doi.org/10.1002/we.2385, 2019. a
Gaertner, E., Rinker, J., Sethuraman L.and Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P.,Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Sheilds, M., Allen, C., and Viselli, A.: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, Tech. rep., https://www.nrel.gov/docs/fy20osti/75698.pdf (last access: 1 March 2024), 2014. a
Gao, Z. and Moan, T.: Fatigue damage induced by nonGaussian bimodal wave loading in mooring lines, Appl. Ocean Res., 29, 45–54, https://doi.org/10.1016/j.apor.2007.06.001, 2007. a
Gräfe, M., Pettas, V., and Cheng, P. W.: Wind field reconstruction using nacelle based lidar measurements for floating wind turbines, J. Phys. Conf. Ser., 2265, 042022, https://doi.org/10.1088/1742-6596/2265/4/042022, 2022. a
Gräfe, M., Pettas, V., Gottschall, J., and Cheng, P. W.: Quantification and correction of motion influence for nacelle-based lidar systems on floating wind turbines, Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, 2023a. a, b, c
Gräfe, M., Özinan, U., and Cheng, P. W.: Lidar-based virtual load sensors for mooring lines using artificial neural networks, J. Phys. Conf. Ser., 2626, 012036, https://doi.org/10.1088/1742-6596/2626/1/012036, 2023b. a
GWEC: Floating offshore wind – a global opportunity, Report, Global Wind Energy Council, https://gwec.net/wp-content/uploads/2022/03/GWEC-Report-Floating-Offshore-Wind-A-Global-Opportunity.pdf (last access: 29 October 2024), 2022. a
Hall, M.: MoorDyn V2: New Capabilities in Mooring System Components and Load Cases: Preprint, https://www.osti.gov/biblio/1669566 (last access: 29 October 2024), 2020. a
Hall, M. and Goupee, A.: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data, Ocean Eng., 104, 590–603, https://doi.org/10.1016/j.oceaneng.2015.05.035, 2015. a
Hlaing, N., Morato, P. G., de Nolasco Santos, F., Weijtjens, W., Devriendt, C., and Rigo, P.: Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks, Struct. Health Monit., 23, 1641–1663, https://doi.org/10.1177/14759217231186048, 2023. a
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computat., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997. a
Jonkman, B. J.: TurbSim User’s Guide v2, Tech. rep., https://nwtc.nrel.gov/TurbSim (last access: 29 October 2024), 2014. a
Jonkman, J. M.: Dynamics modeling and loads analysis of an offshore floating wind turbine, Tech. rep., National Renewable Energy Laboratory NREL, ISBN 0549315497, 2007. a
MATLAB: 9.9.0.1495850 (R2020b), The MathWorks Inc., Natick, Massachusetts, https://www.mathworks.com (last access: 29 October 2024), 2020. a
Miner, M.: Cumulative Damage in Fatigue, J. Appl. Mech., 3, 159–164, 1945. a
Müller, K. and Cheng, P. W.: A Surrogate Modeling Approach for Fatigue Damage Assessment of Floating Wind Turbines,ASME (The American Society of Mechanical Engineers), V010T09A065, https://doi.org/10.1115/OMAE2018-78219, 2018. a
Pettas, V., García, F., Kretschmer, M., Rinker, J., Clifton, A., and Cheng, P.: A numerical framework for constrainin synthetic wind fields with lidar measurements for improved load simulations, in: Proceedings of AIAA Scitech 2020 Forum, Aerospace Research Central (ARC), https://doi.org/10.2514/6.2020-0993, 2020. a
SBG-Systems: Ellipse Series, https://www.sbg-systems.com/wp-content/uploads/Ellipse_Series_Leaflet.pdf (last access: 29 October 2024), 2023. a
Schröder, L., Dimitrov, N. K., Verelst, D. R., and Sørensen, J. A.: Using Transfer Learning to Build Physics-Informed Machine Learning Models for Improved Wind Farm Monitoring, Energies, 15, 558, https://doi.org/10.3390/en15020558, 2022. a
Shafiee, M.: Failure analysis of spar buoy floating offshore wind turbine systems, Innovative Infrastructure Solutions, 8, 28, https://doi.org/10.1007/s41062-022-00982-x, 2022. a
Um, T. T., Pfister, F. M. J., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., and Kulić, D.: Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring Using Convolutional Neural Networks, in: Proceedings of the 19th ACM International Conference on Multimodal Interaction, ICMI '17, Association for Computing Machinery, New York, NY, USA, 216–220, ISBN 9781450355438, https://doi.org/10.1145/3136755.3136817, 2017. a
Veers, P. S., Powell, D. C., and Connell, J. R.: Three-Dimensional Wind Simulation, https://api.semanticscholar.org/CorpusID:3507109 (last access: 29 October 2024), 1998. a
Walker, J., Coraddu, A., Collu, M., and Oneto, L.: Digital twins of the mooring line tension for floating offshore wind turbines to improve monitoring, lifespan, and safety, Journal of Ocean Engineering and Marine Energy, 8, 1–16, https://doi.org/10.1007/s40722-021-00213-y, 2022. a
Özinan, U., Kretschmer, M., Lemmer, F., and Cheng, P. W.: Effects of yaw misalignment on platform motions and fairlead tensions of the OO-Star Wind Floater Semi 10MW floating wind turbine, J. Phys. Conf. Ser., 1618, 052081, https://doi.org/10.1088/1742-6596/1618/5/052081, 2020. a
Short summary
This study explores a methodology using floater motion and nacelle-based lidar wind speed measurements to estimate the tension and damage equivalent loads (DELs) on floating offshore wind turbines' mooring lines. Results indicate that fairlead tension time series and DELs can be accurately estimated from floater motion time series. Using lidar measurements as model inputs for DEL predictions leads to similar accuracies as using displacement measurements of the floater.
This study explores a methodology using floater motion and nacelle-based lidar wind speed...
Altmetrics
Final-revised paper
Preprint